[¸´Ï°×¨Ìâ]Öп¼Êýѧ¸´Ï°£º¶þ´Îº¯ÊýµÄͼÏñÓëÐÔÖÊ ÏÂÔر¾ÎÄ

¶þ´Îº¯ÊýͼÏñÓëÐÔÖÊ

֪ʶÊáÀí

½ÌѧÖØ¡¢Äѵã

×÷ÒµÍê³ÉÇé¿ö

µäÌâ̽¾¿

Àý1£®»­³öy?12x?4x?10µÄͼÏñ£¬ÓÉͼÏñÄãÄÜ·¢ÏÖÕâ¸öº¯Êý¾ßÓÐʲôÐÔÖÊ£¿ 22Àý2£®Í¨¹ýÅä·½±äÐΣ¬Ëµ³öº¯Êýy??2x?8x?8µÄͼÏñµÄ¿ª¿Ú·½Ïò£¬¶Ô³ÆÖᣬ¶¥µã×ø±ê£¬Õâ¸öº¯ÊýÓÐ×î´óÖµ»¹ÊÇ×îСֵ£¿Õâ¸öÖµÊǶàÉÙ£¿

Àý3£®¸ù¾ÝÏÂÁÐÌõ¼þ£¬·Ö±ðÇó³ö¶ÔÓ¦µÄ¶þ´Îº¯Êý¹Øϵʽ¡£ÒÑÖªÅ×ÎïÏߵĶ¥µãÊÇ£¨¨D1£¬¨D2£©£¬ÇÒ¹ýµã£¨1£¬10£©¡£

Àý4£®ÒÑÖªÒ»¸ö¶þ´Îº¯ÊýµÄͼÏñ¹ýµã£¨0£¬1£©£¬ËüµÄ¶¥µã×ø±êÊÇ£¨8£¬9£©£¬ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ¹Øϵʽ¡£

ÑÝÁ··½Õó

Aµµ£¨¹®¹ÌרÁ·£©

1£®ÏÂÁк¯ÊýÊǶþ´Îº¯ÊýµÄÓУ¨ £©

(1)y?1?x2;(2)y?2

2

2;(3)y?x(x?3);(4)y?ax2?bx?c;(5)y?2x?12x(6)

y=2(x+3)£­2x

A¡¢1¸ö£» B¡¢2¸ö£» C¡¢3¸ö£» D¡¢4¸ö 2.¹ØÓÚy?12x£¬y?x2£¬y?3x2µÄͼÏñ£¬ÏÂÁÐ˵·¨Öв»ÕýÈ·µÄÊÇ£¨ £© 3A£®¶¥µãÏàͬ B£®¶Ô³ÆÖáÏàͬ C£®Í¼ÏñÐÎ×´Ïàͬ D£®×îµÍµãÏàͬ 3£®Å×ÎïÏßy?1?x?2?2?1µÄ¶¥µã×ø±êÊÇ£¨ £© 22A£®£¨2£¬1£© B£®£¨-2£¬1£© C£®£¨2£¬-1£© D£®£¨-2£¬-1£©

4.ÒÑÖª¶þ´Îº¯Êýy?mx?x?m(m?2)µÄͼÏó¾­¹ýÔ­µã£¬ÔòmµÄֵΪ £¨ £© A£® 0»ò2 B£® 0 C£® 2 D£®ÎÞ·¨È·¶¨ 5.ÒÑÖª¶þ´Îº¯Êýy1??3x¡¢y2??£¨ £©

A¡¢y1?y2?y3 B¡¢y3?y2?y1 C¡¢y1?y3?y2 D¡¢y2?y3?y1

26£®Á½ÌõÅ×ÎïÏßy?xÓëy??xÔÚͬһ×ø±êϵÄÚ£¬ÏÂÁÐ˵·¨Öв»ÕýÈ·µÄÊÇ£¨ £©

22123x¡¢y3?x2£¬ËüÃǵÄͼÏñ¿ª¿ÚÓÉСµ½´óµÄ˳ÐòÊÇ32A£®¶¥µãÏàͬ B£®¶Ô³ÆÖáÏàͬ C£®¿ª¿Ú·½ÏòÏà·´ D£®¶¼ÓÐ×îСֵ

7£®ÒÑÖª¶þ´Îº¯Êýy?ax?bx?c£¨a?0£©µÄͼÏóÈçͼËùʾ£¬ÓÐÏÂÁнáÂÛ£º¢Ùabc?0£»¢Úa+b+c>0¢Ûa-b+c<0£»£»ÆäÖÐÕýÈ·µÄ½áÂÛÓУ¨ £© A£®1¸ö

B£®2¸ö

C£®3¸ö

D£®4¸ö

2y x=1 a. ÒÑÖªÅ×ÎïÏߵĶ¥µãΪ£¨-1£¬-2£©£¬ÇÒͨ¹ý£¨1£¬10£©£¬ -1 O ÔòÕâÌõÅ×ÎïÏߵıí´ïʽΪ£¨ £©

1. y=3(x?1)£­2 B£®y=3(x?1)£«2 C£®y=3(x?1)£­2 D£®y=£­3(x?1)+2

2222x 29£®Å×ÎïÏßy?3xÏòÓÒƽÒÆ1¸öµ¥Î»£¬ÔÙÏòÏÂƽÒÆ2¸öµ¥Î»£¬ËùµÃµ½µÄÅ×ÎïÏßÊÇ( )

22y?3(x?1)?2y?3(x?1)?2 B. A .

C.y?3(x?1)?2 D.y?3(x?1)?2 10£®Å×ÎïÏßy?x?4x?4µÄ¶¥µã×ø±êÊÇ£¨ £©

A£®£¨2£¬0£© B£®£¨2£¬-2£© C£®£¨2£¬-8£© D£®£¨-2£¬-8£©

Bµµ£¨ÌáÉý¾«Á·£©

22212

x+3x£­5µÄÐÎ×´¡¢¿ª¿Ú·½Ïò¶¼Ïàͬ£¬Ö»ÓÐλÖò»Í¬µÄÅ×ÎïÏßÊÇ£¨ £© 2122

A. y = x+3x£­5 B. y=£­x+2x

21212

C. y =x+3x£­5 D. y=x

2211.ÓëÅ×ÎïÏßy=£­

12£®¶ÔÅ×ÎïÏßy=2(x?2)£­3Óëy=£­2(x?2)£«4µÄ˵·¨²»ÕýÈ·µÄÊÇ£¨ £©

A£®Å×ÎïÏßµÄÐÎ×´Ïàͬ B£®Å×ÎïÏߵĶ¥µãÏàͬ C£®Å×ÎïÏ߶ԳÆÖáÏàͬ D£®Å×ÎïÏߵĿª¿Ú·½ÏòÏà·´ 13.¶ÔÓÚÅ×ÎïÏßy??(x?5)2?3£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨ £© A£®¿ª¿ÚÏòÏ£¬¶¥µã×ø±ê(5£¬3) C£®¿ª¿ÚÏòÏ£¬¶¥µã×ø±ê(?5£¬3)

B£®¿ª¿ÚÏòÉÏ£¬¶¥µã×ø±ê(5£¬3) D£®¿ª¿ÚÏòÉÏ£¬¶¥µã×ø±ê(?5£¬3)

221314£®Å×ÎïÏßy=x2?2mx?m?2µÄ¶¥µãÔÚµÚÈýÏóÏÞ£¬ÊÔÈ·¶¨mµÄÈ¡Öµ·¶Î§ÊÇ£¨ £© A£®m£¼£­1»òm£¾2 B£®m£¼0»òm£¾£­1 C£®£­1£¼m£¼0 D£®m£¼£­1

15.ÔÚͬһֱ½Ç×ø±êϵÖУ¬º¯Êýy?mx?mºÍy??mx?2x?2£¨mÊdz£Êý£¬ÇÒm?0£©µÄͼÏó¿ÉÄÜÊÇ£¨ £© £®£®

2yyy y

16£®º¯Êýy=?Ox Ox Ox O£Ä

x 12x£«2x£­5µÄͼÏñµÄ¶Ô³ÆÖáÊÇ£¨£Á£Â£Ã £© 2A£®Ö±Ïßx=2 B£®Ö±Ïßa=£­2 C£®Ö±Ïßy=2 D£®Ö±Ïßx=4

217.¶þ´Îº¯Êýy=?x?2x?1ͼÏñµÄ¶¥µãÔÚ£¨ £©

A£®µÚÒ»ÏóÏÞ B£®µÚ¶þÏóÏÞ C£®µÚÈýÏóÏÞ D£®µÚËÄÏóÏÞ 18£®Èç¹ûÅ×ÎïÏßy=x2?6x?cµÄ¶¥µãÔÚxÖáÉÏ£¬ÄÇôcµÄֵΪ£¨ £©

A£®0 B£®6 C£®3 D£®9

19£®ÒÑÖª¶þ´Îº¯Êýy?ax?bx?c£¬Èç¹ûa£¾0,b£¼0,c£¼0£¬ÄÇôÕâ¸öº¯ÊýͼÏñµÄ¶¥µã±ØÔÚ£¨ £©

A£®µÚÒ»ÏóÏÞ B£®µÚ¶þÏóÏÞ C£®µÚÈýÏóÏÞ D£®µÚËÄÏóÏÞ 20.ÒÑÖªÕý±ÈÀýº¯Êýy?kxµÄͼÏñÈçÓÒͼËùʾ£¬Ôò¶þ´Îº¯Êýy?2kx?x?k µÄͼÏñ´óÖÂΪ£¨ £© Cµµ£¨¿çÔ½µ¼Á·£©

21£®ÈçͼËùʾ£¬Âú×ãa£¾0,b£¼0µÄº¯Êýy=ax2?bxµÄͼÏñÊÇ£¨ £©

222yyyy y O x

OxOxOxO x

22.ÈôA£¨-4£¬y1£©£¬B£¨-3£¬y2£©£¬C£¨1£¬y3£©Îª¶þ´Îº¯Êýy=x+4x-5µÄͼÏóÉϵÄÈýµã£¬Ôòy1£¬y2£¬y3µÄ´óС¹ØϵÊÇ£¨ £©

A¡¢y1£¼y2£¼y3 B¡¢y2£¼y1£¼y3 C¡¢y3£¼y1£¼y2 D¡¢y1£¼y3£¼y2 ¶þ¡¢Ìî¿ÕÌ⣺

23.¶þ´Îº¯Êýy?ax£¨a?0£©µÄͼÏñ¿ª¿ÚÏò£ß£ß£ß£ß£¬¶Ô³ÆÖáÊǣߣߣߣߣ¬¶¥µã×ø±êÊǣߣߣߣߣ¬Í¼ÏñÓÐ×î£ß£ß£ßµã£¬x£ß£ß£ßʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬x£ß£ß£ßʱ£¬yËæxµÄÔö´ó¶ø¼õС¡£ 24£®Å×ÎïÏßy=£­

22

1(x?2)2£­4µÄ¿ª¿ÚÏò£ß£ß£ß£¬¶¥µã×ø±ê£ß£ß£ß£¬¶Ô³ÆÖá£ß£ß£ß£¬x£ß£ß2£ßʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬x£ß£ß£ßʱ£¬yËæxµÄÔö´ó¶ø¼õС¡£