冀教版数学九年级上册24.4一元二次方程的应用习题(含答案).docx 下载本文

—————————— 新学期 新成绩 新目标 新方向 ——————————

24.4 一元二次方程的应用

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?

解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元, 依题意x≤10

∴(44-x)(20+5x)=1600 展开后化简得:x2-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍) 即每件降价4元 要找准关系式

2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?

解:设增加x (8+x)(12+x)=96+69 x=3 增加了3行3列

3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价

解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元. 依题意得:

y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500 (30<=x<=70)

(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元. ∴销售单价最高时获总利最多,且多获利26500元.

4.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问

(1)从开始加速到追上货车,警车的速度平均每秒增加多少m? (2)从开始加速到行驶64m处是用多长时间? 解:

2.5*8=20 100-20=80 80/8=10 100/【(0+10a)/2】=10解方程为2 64/【(0+2a)/2】=a解方程为8

桑水

—————————— 新学期 新成绩 新目标 新方向 ——————————

5.用一个白铁皮做罐头盒,每张铁皮可制作25个盒身,或制作盒底40个,一个盒身和两个盒底配成一套罐头盒。现在有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身和盒底正好配套?

6、解:设用 X 张制罐身 用 Y 张制罐底 则X+Y=36 X=36-Y 25X=40Y/2 X=4Y/5 4Y/5=36-Y Y=20 X=16

7.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?

解:设边长x

则(19-2x)(15-2x)=77 4x^2-68x+208=0 x^2-17x+52=0

(x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去 故x=4

8. 某超市一月分销售额是20万元,以后每月的利润都比上个月的利润增长10%,则二月分销售额是多少? 3月的销售额是多少?

解:二月20*(1+0.1)=22 三月22*(1+0.1)=24.2

9. 某企业2007年利润为50万元,如果以后每年的利润都比上年的利润增长x%。那么2009年的年利润将达到多少万元?

解:50*(1+x%)^2

10. 某厂经过两年体制改革和技术革新,生产效率翻了一番,求平均每年的增长率(精确到0.1%)

解:设平均每年的增长率x

(x+1)^2=2 x=0.414

11. 一拖拉机厂,一月份生产出甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐月递增,又知二月份甲、乙两型的产量之比为3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月增长率及甲型拖拉机一月份的产量。

解:设乙的增长率为X,那么二月乙就是16(1+X)台,甲就是16(1+X)×3÷2;三月乙就是16(1+X)2台,甲就是16(1+X)×3÷2+10台,所以列出算式16(1+X)2+16(1+X)×3÷2+10=65 求解,然后可以分别算出一月二月乙的产量,然后就可以解得甲的产量了17.

12.如图,出发沿BC匀速向点C运动。已知点N的速度每秒比点M快1cm,两点同时出发,运动3秒后相距10cm。求点M和点N运动的速度。

桑水

—————————— 新学期 新成绩 新目标 新方向 ——————————

解:设M速度x,则N为(x+1),(BC—3x)的平方加上3(x+1)的平方=10的平方,解得x=1或x=5/3又因为AC=7,所以x=1,M的速度为1m/s,N的速度2m/s

13.用长为100cm的金属丝做一个矩形框.李明做的矩形框的面积为400平方厘米,而王宁做的矩形框的面积为600平方厘米,你知道这是为什么吗?

解:设矩形一边长为X厘米,则相邻一边长为1/2(100-2X)厘米,即(50-X)厘米,依题意得:

X*(50-X)=400 解之得:X1=40,X2=10; X*(50-X)=600 解之得:X1=20,X2=30;

所以李明做的矩形的长是40厘米,宽是10厘米;

王宁做的矩形的长是30厘米,宽是20厘米。

14.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。设该商品的售价为X元。 (1)、每件商品的利润为 元。若超过50元,但不超过80元,每月售 件。

若超过80元,每月售 件。(用X的式子填空。) (2)、若超过50元但是不超过80元,售价为多少时 利润可达到7200元 (3)、若超过80元,售价为多少时利润为7500元。

解: 1)x-40 210-(x-40)\\10 210-(x-40)\\10-3(x-80)

(2)设售价为a (a-40)[210-(a-40)\\10=7200

(3)设售价为b (b-40)[210-(b-40)\\10-3(b-80)=7500 (第2 、3问也可设该商品的售价为X1 x2元)

15.某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元

解:衬衫降价x元

2100=(50-x)(30+2x)=1500+70x-x^2 x^2-70x+600=0 (x-10)(x-60)=0 x-60=0 x=60>50 舍去 x-10=0 x=10

16.在一块面积为888平方厘米的矩形材料的四角,各剪掉一个大小相同的正方形(剪掉的正方形作废料处理,不再使用),做成一个无盖的长方体盒子,要求盒子的长为25cm,宽为高的2倍,盒子的宽和高应为多少?

解:设剪去正方形的边长为x,x同时是盒子的高,则盒子宽为2x; 矩形材料的尺寸: 长:25+2x

桑水