复数说课稿 下载本文

《复数的有关概念》说课稿 大家好!我是焦作一中的郜珂。今天,有幸借此平台与大家交流,希望各位专家和老师指导我的说课。我说课的题目是《复数的有关概念》,我将从教材分析、学情分析、教学目标、

教学过程、自我反思五个部分作具体的阐述。 一、教材分析 首先是教材分析,《复数的有关概念》是北师大版新课程标准实验教科书选修系列2的模块2中第五章第一节的内容,这节课的主要内容是数系的扩充与复数的引入、以及复数的有关概念。数系扩充的过程体现了数学的发现和创造的过程,同时也体现了数学发生发展的客观需求和背景。 复数的引入是中学阶段数系的又一次扩充。对于高中生来说,学习一些复数的基础知识是十分必要的,这可以促使学生对数的概念有一个初步的较为完整的认识,也给他们运用数

学知识解决问题增添了新的工具,同是还为进一步学习高等数学打下一定的基础。 在实际生活中,复数在电力学、热力学、流体力学、固体力学、系统分析、信息分析等

方面都得到了广泛的运用,是现代人才必备的基础知识之一。 二、学情分析 与本节教材相关的学生情况有如下几个特征:(1)我们的学生在从小学到高中的学习中已经掌握了整数、分数、正数、负数、有理数、无理数、实数这些概念,也掌握了相应的运算法则和运算律;(2)同时又从政治和历史课中了解到一些与数系扩充的有关的重要历史事件;(3)但是学生们对数的分类的掌握,主要依靠的是简单记忆,当然对数系的扩充过程以及与人

类发展史的必然联系不甚了解。 三、教学目标

鉴于以上对教材和学情的分析,确定本节课的教学目标如下: 1、知识目标:了解数系扩充的过程,理解复数的基本概念,掌握复数相等的充要条件 2、能力目标:通过对新概念的学习提高学生的认知能力,在复数相等充要条件的研究过

程中提高学生类比思考的能力; 3、情感目标:提高学生学习数学的兴趣;拓展数学视野,使学生逐步认识到数学的科学

价值、应用价值和文化价值。 四、课堂设计

为了达成以上教学目标,我将本节课设计成以下五个环节: 首先是设置情境,演示数系扩充的过程;然后引入虚数,讲解复数的基本概念;接下来通过类比学习,掌握复数相等的充要条件;完成了以上新概念的学习环节之后,利用课堂小

结巩固本节课主要内容。最后进行课外引申,激发学生课外学习兴趣。 第一环节中,首先让学生回忆从小学到高中认识数的过程,然后结合人类发展史,通过

幻灯片展示,用通俗易懂的语言向学生演示数系发展的过程。展示过程如下: 从远古围猎时期人类常用的“结绳”和“堆石”记数方法中,逐步产生了自然数的概念;在分配劳动成果的过程中,产生了“正分数”的概念;随着人类商品交换时代的来临,为了表示相反意义的量,又引入了“负数”的概念;至此人们认为所有的数都可以用两个互质整数的比值来表示;然而,随着人类种植活动的兴盛,在丈量土地、计算长度、计算产量过程中产生了经验几何学,其中在勾股弦定理使用中发现:在求两直角边长度都是“1”的直角三

角形斜边的时候,其斜 边长度不能用任何有理数来表示,于是引入了无理数,把数系扩充为实数。 在此,提出问题:数系发展的动力和原因是什么?由学生体会并回答。 这个过程中通过兴趣学习,让学生了解数系扩充的过程,让学生亲自体会到“数的产生和发展,是人类生产和生活的需要”。之后,我还会指出数系的每一次扩充也是数学自身发展

和完善的需要,并以解方程为例进行说明。为了使方程理论更加完整数系一步步扩充到了实数。

第二环节:引入虚数,理解复数的基本概念。 通过第一环节的学习,学生已经了解了由自然数到实数的数系扩充过程。但是人们发现在实数范围内仍然无法完全解决代数方程根的问题,例如在解方程x?1?0时候,用任何实数

都无法表达其方程的根,这就必须引入新的“数” 。2 这时,要鼓励学生积极思考和尝试创造,并肯定学生的思维结果。由此自然地引入“虚数单位i”,规定i2??1;接着要求学生尝试求解方程x2??4和x2?2x?5?0的根,让学生逐步发现复数的代数表示形式z?a?bi。指出这些原来在实数范围内无解的方程,现在可以借助虚数单位表示出根来,这些根都是虚数,与之对应,之前我们认识的数都是实数,实数和虚数

统称为复数。接下来,提出问题“形如z?a?bi的数是否一定是虚数?” 在学生思考和讨论之后,总结结论并讲解实部虚部的概念,通过对实部虚部取值情况的分析,帮助学生掌握复数集的分类:当虚部b=0时复数z?a?bi表示的是实数,当虚部b≠0时复数z?a?bi表示的是虚数,特别的当b≠0且a=0时复数z?a?bi可写成z?bi,这样的数是纯虚数。至此完成了“引导学生从实数系到复数系扩充”的教学任务。结合学生认识数的过程,引导学生发现“每个人认识数字的历程都和人类发展史中数系扩充的过程是一致的”,让学生体会到数学体系、数学思维的发展会促进人类全面素质的提高,从而激发学生学习数学的兴趣和热情。 为了巩固学生对复数概念的理解,与学生一起分析例一,边启发边讲解,注重实部虚部概念的表述,强调复数a?bi的实部是a,虚部是b,不是bi。之后要求学生思考课后练习第一题,以此加强对复数概念和复数集分类的掌握。最后通过提问的方式确认学生已经达到本环节教学目标的要求。为了提高学生思维能力并加强学生对复数概念的理解,引导学生完成例一变式:

例1变式:当m为何实数时,复数z?m2?m?2?(m2?1)i是 (1)实数;(2)虚数;(3)纯虚数;(4)0 在第四问中,通过复数z等于0的题目设置引导学生向复数相等充要条件的教学目标过度。

第三环节:进入到第三个教学环节,引导学生类比两个二项式相等的条件,归纳出复数相等的充要条件,即实部与实部相等并且虚部与虚部相等。之后,详细讲解并板书例二,如

幻灯片所示,起到教师的典范的作用。 例2:设x,y?r,并且(x?2)?2xi??3y?(y?1)i,求x,y的值. 在观察学生反映,确认学生已经基本理解复数相等的充要条件之后,要求学生独立完成课后练习第二题。经过巡视,挑出学生代表展示其解析过程,表扬书写比较工整的学生,以

达到教育全班学生要规范严谨的教学目的。 为了引起学生重视并给学生提供思维能力升华的空间,鼓励学生积极思考例二 变式

例2变式:已知实数x与纯虚数y满足2x?1?2i?y,求x和y. 这个题目要由学生在组内讨论完成,为了保证教学效果,教师积极参与到小组讨论中去,

通过交流与观察,由完成较好的小组推举出代表为大家进行讲解,教师及时给予点评。 第四个环节课堂小结 在完成了新知学习的环节之后,进入到课堂小结。引导学生通读一遍课本的同时回顾本节课的主要内容,由学生自己总结出本节课的主要知识和方法。并在多媒体上演示这些内容。

以此达到提高学生归纳总结能力的教学目标。 布置作业时,分两部分:

1、书面作业:课后习题a组第1、2题,书面作业设置的目的,就是通过这些题目的训

练,达到促使学生课下复习思考,加深对复数相关概念的理解和应用。 2、知识拓展作业:小组成员交流合作,写一篇与数系扩充和发展有关的小论文;以此促使学生对数学史进行研究,延伸了数学课堂,并达到提高学生语言组织能力、逻辑思考能力的教学目的。

第五个环节,课外引申,激发学生课外学习的兴趣 最后一个环节,进行课外引申,激发学生课外学习数学的兴趣。通过提出“数系发展到复数之后还能不能继续扩充?”这样的问题,引发学生思考,并鼓励学生了去解章末阅读材料中“四元数”的内容,再推荐一本书目《虚数的故事》给兴趣浓厚的学生提供课外拓展数学视野的平台。 五、自我反思

在最后,我对本节课的设计进行一下自我反思。 在设计之初,考虑到复数基本概念比较容易掌握,但如果要求学生简单硬性记忆,并不能达到新课程标准中三维目标的要求。所以本节课设计理念就是:把数系扩充过程的详细生动讲解作为一个亮点,以此吸引学生的注意力,提高学生学习兴趣,激发学生思考和创造的

精神,并且期望能达到进一步提高学生数学素养的最高目标。 在课堂设计中,采用了教师示范、自学讨论、学生互评等多元化的教学方式,在教学过程中时刻注重学生的参与,每个环节都采用有效的方法来确认教学目标的达成,保证课堂的

时效性,圆满完成本节课的教学任务。 我的说课到此结束,希望各位专家和老师给予指导。谢谢! 焦作一中 郜珂

2010年3月29日篇二:数系的扩充和复数的概念说课稿 3.1.1《数系的扩充和复数的概念》说课稿 郑州十二中 张敬生 一 学习目标分析 学习目标是教学中最先要考虑的因素,明晰学习目标,做到有的放矢,是课堂教学的第一要素。我从以下几个方面考虑来制定本节课的学习目标:(1)明确《课程标准》要求;(2)分析教材;(3)分析学情。

1、本节课的《课程标准》要求: (1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及与现实世界的联系。 (2)理解复数的基本概念以及复数相等的充要条件。 (3)了解复数的代数表示法及其几何意义。 2、分析教材 复数的引入实现了中学阶段数系的最后一次扩充.但是,复数它完全没有按照教科书所描述的逻辑连续性.实际的需要使实数具有某种实在感.可是,复数的情形却不一样,是纯理论的创造. 新课程中复数内容突出复数的代数表示,同时也强调了复数的几何意义.它的内容是分层设计的:先将复数看成是有序实数对,再把复数看成是直角坐标系下平面上的点或向量,最后介绍复数代数形式的加、减运算的几何意义.同时,复数作为一种新的数学语言,也为

我们今后用代数的方法解决几何问题提供了新的工具和方法,体现了数形结合思想. 本节课的学习,一方面让学生回忆数系扩充的过程,体会虚数引入的必要性和合理性.另一方面,让学生理解复数的有关概念,掌握复数相等的充要条件,为今后的学习奠定基础.因

此,本节课具有承前启后的作用,是本章的重点内容.