最新《义务教育数学课程标准(2011年版)》 下载本文

(4)在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的。

三、统计与概率

(一)抽样与数据分析

1. 经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据。 2. 体会抽样的必要性,通过实例了解简单随机抽样(参见例67)。 3. 会制作扇形统计图,能用统计图直观、有效地描述数据。

4. 理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述(参见例68)。 5. 体会刻画数据离散程度的意义,会计算简单数据的方差(参见例69)。

6. 通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息(参见例70)。

7. 体会样本与总体关系,知道可以通过样本平均数、样本方差推断总体平均数、总体方差。 8. 能解释统计结果,根据结果作出简单的判断和预测,并能进行交流(参见例70)。 9. 通过表格、折线图、趋势图等,感受随机现象的变化趋势(参见例71)。

(二)事件的概率

1. 能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率(参看例72、例73)。

2. 知道通过大量地重复试验,可以用频率来估计概率。

四、综合与实践

1.结合实际情境,经历设计解决具体问题的方案,并加以实施的过程,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。

2.会反思参与活动的全过程,将研究的过程和结果形成报告或小论文,并能进行交流,进一步获得数学活动经验。

3.通过对有关问题的探讨,了解所学过知识(包括其他学科知识)之间的关联,进一步理解有关知识,发展应用意识和能力。

(参见例74、例75、例76、例77、例78、例79)

21

①标有*的内容为选学内容,不作考试要求。 第四部分 实施建议 一、教学建议

教学活动是师生积极参与、交往互动、共同发展的过程。

数学教学应根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获得数学的基础知识、基本技能、基本思想、基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题的能力、分析问题和解决问题的能力。

在数学教学活动中,教师要把基本理念转化为自己的教学行为,处理好教师讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;合理地运用现代信息技术,有条件的地区,要尽可能合理、有效地使用计算机和有关软件,提高教学效益。

(一) 数学教学活动要注重课程目标的整体实现

为使每个学生都受到良好的数学教育,数学教学不仅要使学生获得数学的知识技能,而且要把知识技能、数学思考、问题解决、情感态度四个方面目标有机结合,整体实现课程目标。

课程目标的整体实现需要日积月累。在日常的教学活动中,教师应努力挖掘教学内容中可能蕴涵的、与上述四个方面目标有关的教育价值,通过长期的教学过程,逐渐实现课程的整体目标。因此,无论是设计、实施课堂教学方案,还是组织各类教学活动,不仅要重视学生获得知识技能,而且要激发学生的学习兴趣,通过独立思考或者合作交流感悟数学的基本思想,引导学生在参与数学活动的过程中积累基本经验,帮助学生形成认真勤奋、独立思考、合作交流、反思质疑等良好的学习习惯。

例如,关于“零指数”教学方案的设计可作如下考虑:教学目标不仅要包括了解零指数幂的“规定”、会进行简单计算,还要包括感受这个“规定”的合理性,并在这个过程中学会数学思考、感悟理性精神(参见例80)。

(二)重视学生在学习活动中的主体地位

有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。 1.学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。

学生获得知识,必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等方式;学生应用知识并逐步形成技能,离不开自己的实践;学生在获得知识技能的过程中,只有亲身参与教师精心设计的教学活动,才能在数学思考、问题解决和情感态度方面得到发展(参见例81)。

2.教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件。

教师的“组织”作用主要体现在两个方面:第一,教师应当准确把握教学内容的数学实质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案;第二,在教学活动中,教师要选择适当的教学方式,因势利导、适时调控、努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动。

教师的“引导”作用主要体现在:通过恰当的问题,或者准确、清晰、富有启发性的讲授,引导学生积极思考、求知求真,激发学生的好奇心;通过恰当的归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想;能关

22

注学生的差异,用不同层次的问题或教学手段,引导每一个学生都能积极参与学习活动,提高教学活动的针对性和有效性。

教师与学生的“合作”主要体现在:教师以平等、尊重的态度鼓励学生积极参与教学活动,启发学生共同探索,与学生一起感受成功和挫折、分享发现和成果。

3.处理好学生主体地位和教师主导作用的关系。

好的教学活动,应是学生主体地位和教师主导作用的和谐统一。一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展(参见例31、例51)。

实行启发式教学有助于落实学生的主体地位和发挥教师的主导作用。教师富有启发性的讲授;创设情境、设计问题,引导学生自主探索、合作交流;组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体,逐步学会学习。

(三)注重学生对基础知识、基本技能的理解和掌握

“知识技能”既是学生发展的基础性目标,又是落实“数学思考”“问题解决”“情感态度”目标的载体。 1.数学知识的教学,应注重学生对所学知识的理解,体会数学知识之间的关联。

学生掌握数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化。为了帮助学生真正理解数学知识,教师应注重数学知识与学生生活经验的联系、与学生学科知识的联系,组织学生开展实验、操作、尝试等活动,引导学生进行观察、分析,抽象概括,运用知识进行判断。教师还应揭示知识的数学实质及其体现的数学思想,帮助学生理清相关知识之间的区别和联系等。

数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系,处理好局部知识与整体知识的关系,引导学生感受数学的整体性,体会对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解。

2.在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。例如,对于整数乘法计算,学生不仅要掌握如何进行计算,而且要知道相应的算理;对于尺规作图,学生不仅要知道作图的步骤,而且要能知道实施这些步骤的理由。

基本技能的形成,需要一定量的训练,但要适度,不能依赖机械的重复操作,要注重训练的实效性。教师应把握技能形成的阶段性,根据内容的要求和学生的实际,分层次地落实。

(四) 感悟数学思想,积累数学活动经验

数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。

例如,分类是一种重要的数学思想。学习数学的过程中经常会遇到分类问题,如数的分类,图形的分类,代数式的分类,函数的分类等。在研究数学问题中,常常需要通过分类讨论解决问题,分类的过程就是对事物共性的抽象过程。教学活动中,要使学生逐步体会为什么要分类,如何分类,如何确定分类的标准,在分类的过程中如何认识对象的性质,如何区别不同对象的不同性质。通过多次反复的思考和长时间的积累,使学生逐步感悟分类是一种重要的思想。学会分类,可以有助于学习新的数学知识,有助于分析和解决新的数学问题。

23

数学活动经验的积累是提高学生数学素养的重要标志。帮助学生积累数学活动经验是数学教学的重要目标,是学生不断经历、体验各种数学活动过程的结果。数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中逐步积累的。

教学中注重结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,是学生积累数学活动经验的重要途径。例如,在统计教学中,设计有效的统计活动,使学生经历完整的统计过程,包括收集数据、整理数据、展示数据、从数据中提取信息,并利用这些信息说明问题。学生在这样的过程中,不断积累统计活动经验,加深理解统计思想与方法。

“综合与实践”是积累数学活动经验的重要载体。在经历具体的“综合与实践”问题的过程中,引导学生体验如何发现问题,如何选择适合自己完成的问题,如何把实际问题变成数学问题,如何设计解决问题的方案,如何选择合作的伙伴,如何有效地呈现实践的成果,让别人体会自己成果的价值。通过这样的教学活动,学生会逐步积累运用数学解决问题的经验。

(五)关注学生情感态度的发展

根据课程目标,广大教师要把落实情感态度的目标作为己任,努力把情感态度目标有机地融合在数学教学过程之中。设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:

如何引导学生积极参与教学过程? 如何组织学生探索,鼓励学生创新? 如何引导学生感受数学的价值?

如何使学生愿意学,喜欢学,对数学感兴趣? 如何让学生体验成功的喜悦,从而增强自信心?

如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑? 如何让学生做自己能做的事,并对自己做的事情负责? 如何帮助学生锻炼克服困难的意志? 如何培养学生良好的学习习惯?

在教育教学活动中,教师要尊重学生,以强烈的责任心,严谨的治学态度,健全的人格感染和影响学生;要不断提高自身的数学素养,善于挖掘教学内容的教育价值;要在教学实践中善于用本标准的理念分析各种现象,恰当地进行养成教育。

(六)合理把握“综合与实践”的实施

“综合与实践”的实施是以问题为载体、以学生自主参与为主的学习活动。它有别于学习具体知识的探索活动,更有别于课堂上教师的直接讲授。它是教师通过问题引领、学生全程参与、实践过程相对完整的学习活动。

积累数学活动经验、培养学生应用意识和创新意识是数学课程的重要目标,应贯穿整个数学课程之中。“综合与实践”是实现这些目标的重要和有效的载体。“综合与实践”的教学,重在实践、重在综合。重在实践是指在活动中,注重学生自主参与、全过程参与,重视学生积极动脑、动手、动口。重在综合是指在活动中,注重数学与生活实际、数学与其他学科、数学内部知识的联系和综合应用。

24

教师在教学设计和实施时应特别关注的几个环节是:问题的选择,问题的展开过程,学生参与的方式,学生的合作交流,活动过程和结果的展示与评价等。

要使学生能充分、自主地参与“综合与实践”活动,选择恰当的问题是关键。这些问题既可来自教材,也可以由教师、学生开发。提倡教师研制、开发、生成出更多适合本地学生特点的且有利于实现“综合与实践”课程目标的好问题。

实施“综合与实践”时,教师要放手让学生参与,启发和引导学生进入角色,组织好学生之间的合作交流,并照顾到所有的学生。教师不仅要关注结果,更要关注过程,不要急于求成,要鼓励引导学生充分利用“综合与实践”的过程,积累活动经验、展现思考过程、交流收获体会、激发创造潜能。

在实施过程中,教师要注意观察、积累、分析、反思,使“综合与实践”的实施成为提高教师自身和学生素质的互动过程。

教师应该根据不同学段学生的年龄特征和认知水平,根据学段目标,合理设计并组织实施“综合与实践”活动。

(七)教学中应当注意的几个关系 1.面向全体学生与关注学生个体差异的关系

教学活动应努力使全体学生达到课程目标的基本要求,同时要关注学生的个体差异,促进每个学生在原有基础上的发展。

对于学习有困难的学生,教师要给予及时的关注与帮助,鼓励他们主动参与数学学习活动,并尝试用自己的方式解决问题、发表自己的看法,要及时地肯定他们的点滴进步,耐心地引导他们分析产生困难或错误的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。对于学有余力并对数学有兴趣的学生,教师要为他们提供足够的材料和思维空间,指导他们阅读,发展他们的数学才能。

在教学活动中,要鼓励与提倡解决问题策略的多样化,恰当评价学生在解决问题过程中所表现出的不同水平;问题情境的设计、教学过程的展开、练习的安排等要尽可能地让所有学生都能主动参与,提出各自解决问题的策略,并引导学生通过与他人的交流选择合适的策略,丰富数学活动的经验,提高思维水平。

2.“预设”与“生成”的关系

教学方案是教师对教学过程的“预设”,教学方案的形成依赖于教师对教材的理解、钻研和再创造。理解和钻研教材,应以本标准为依据,把握好教材的编写意图和教学内容的教育价值;对教材的再创造,集中表现在:能根据所教班级学生的实际情况,选择贴切的教学素材和教学流程,准确地体现基本理念和课程内容规定的要求。

实施教学方案,是把“预设”转化为实际的教学活动。在这个过程中,师生双方的互动往往会“生成”一些新的教学资源,这就需要教师能够及时把握,因势利导,适时调整预案,使教学活动收到更好的效果。

3.合情推理与演绎推理的关系

推理贯穿于数学教学的始终,推理能力的形成和提高需要一个长期的、循序渐进的过程。义务教育阶段要注重学生思考的条理性,不要过分强调推理的形式。

推理包括合情推理和演绎推理。教师在教学过程中,应该设计适当的学习活动,引导学生通过观察、尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些结论,发展合情推理能力;通过实例使学生逐步意识到,结论的正确性需要演绎推理的确认,可以根据学生的年龄特征提出不同程度的要求。

25