最新《义务教育数学课程标准(2011年版)》 下载本文

图4

例16 图5是一张动物园的示意图,根据图中所标的位置回答下列问题: (1)熊猫馆在猴山的哪个方向上? (2)大象馆在海洋馆的哪个方向上?

[说明] 可以先从一个固定的观测点出发,描述其他物体的方位,再改变观测点,描述与其他物体的相对方位。

图5

统计与概率

例17 分别选择三个不同的标准把全班同学分为两类,记录调查结果。

[说明] 比较、排列、分类等活动是对数据进行初步整理,是学生进行数据分析的开始,也为以后学习统计与概率及其他方面的数学知识积累感性经验。教学中应鼓励学生依据分类标准得出结论,具体可作如下设计:

41

(1)教师给出问题后,引导学生讨论不同的分类标准。例如,性别、身高、家到学校的距离、出生年月、左右手写字,等等。

(2)当提出的标准较多时,可以分组进行活动,完成调查。 (3)运用自己的方式(文字、图画、表格等)呈现调查结果。

例18 新年联欢会准备买水果,调查班级同学最喜欢吃的水果,设计购买方案。

[说明] 借助学生身边的例子,体会数据调查、数据分析对于决策的作用。此例可以举一反三。教学中可作如下设计:

(1)全班同学讨论决定购买方案的原则,可以在限定的金额内考虑学生最喜欢吃的一种或几种水果,或者其他的原则。

(2)鼓励学生讨论收集数据的方法。例如,可以采用一个同学提案、赞同举手的方法;可以采取填写调查表的方法;可以全部提案后,同学轮流在自己同意的盒里放积木的方法;等等。必须事先约定,每位同学最多可以同意几项。

(3)收集并表示数据,参照事先的约定决定购买水果的方案。

要根据学生讨论的实际情况进行灵活处理,购买方案没有对错之分,但要符合最初制定的原则。

例19 对全班同学的身高进行调查分析。

[说明] 学校一般每年都要测量学生的身高,这为学习统计提供了很好的数据资源,因此这个问题可以贯穿第一学段和第二学段,根据不同学段的学生特点,要求可以有所不同。希望学生把每年测量身高的数据都保留下来,养成保存资料的习惯。在第一学段,主要让学生感悟可以从数据中得到一些信息。教学中可以作如下设计:

(1)指导学生将全班同学的身高进行汇总。

(2)从汇总后的数据中发现信息。比如,最高(最大值)、最矮(最小值)、相差多少(极差),大部分同学的身高是多少(众数)等。在讨论过程中,括号中的有些名词并不需要出现,但是希望学生体会数据所代表的意义。

(3)在整理中,可以让学生尝试创造灵活的方法。例如,寻找最高,可以直接比较寻找,当学生人数比较多时,也可以分组寻找组内最高,然后在每组的最高中寻找最高;在考虑顺序问题时,可以参见例2。 综合与实践

例20 图形分类。

如图6所示,桌上散落着一些扣子,请把这些扣子分类。想一想:应当如何确定分类的标准?根据分类的标准可以把这些扣子分成几类?然后具体操作,并用文字、图画或表格等方式把结果记录下来。

42

图6

[说明] 本活动适合于本学段的各个年级,可以在要求上有所区分。本活动的目的是希望学生能够清楚,分类是要依赖分类标准的,如扣子的形状、扣子的颜色或者扣眼的数量都可以作为分类的标准,而在不同的分类标准下分类的结果可能是不同的。本活动将有利于培养学生把握图形的特征、抽象出多个图形的共性的能力。另一方面,活动还要求学生运用文字、图画或表格等方式记录对扣子进行分类后的结果,这有利于培养学生整理数据的能力。

教师在此活动的教学中可以作如下设计:

(1)教师提出问题,引导学生讨论分类标准。可以启发学生这样思考:先关注一个指标作为分类标准,如先关注颜色;在此基础上,再进一步关注两个指标作为分类标准,如进一步关注颜色和形状;最后再关注颜色、形状和扣眼数。这样可以避免出现混乱。

(2)根据已经讨论确定的分类标准对学生分组,引导学生实际操作,合作完成计数;各小组呈现统计结果。 (3)教师组织学生报告统计结果,引导学生作出评价,帮助学生整理思路。

例21 生活中的轴对称图形。

组织学生分组收集日常生活中常见的图形(如图标),观察它们是否有对称轴,若有对称轴,数出或说出有几条对称轴。尝试画出它们的对称轴。在课堂中展示交流大家的发现,并尝试设计出一些轴对称图形。

[说明] 这个活动可以鼓励学生主动观察,设法收集(如可以使用数码相机或现场素描等)。学生可以结合自己的生活环境发现、找到他们熟悉的图形对象中隐藏的对称轴,并在交流过程中丰富自己的经验,如下面的图7:

图7

在交流大家收集到的图形的基础上,教师进一步鼓励学生自己设计轴对称图形,并交流自己图形所表达的意思。

43

例22 上学时间。

让学生记录自己在一个星期内每天上学途中所需要的时间,并从这些数据中发现有用的信息。

[说明] 这个活动适用于二、三年级,有利于培养学生的数据分析意识:知道在现实生活中,有许多问题可以先调查数据,通过对数据的分析得到结论;如果把记录时间精确到分,可能学生每天上学途中需要的时间是不一样的,可以让学生感悟数据的随机性;更进一步,让学生感悟虽然数据是随机的,但数据较多时具有某种稳定性,可以从中得到很多信息。

教学中可以作如下设计:

(1)指导学生如何测量时间和作记录,启发学生先设计调查方案。例如,事先调整家里钟表的时间,使其和学校钟表的时间保持一致;在调查期间需要保证每天上学途中的行为尽量一致;作为参照,也可记录放学回家的时间;等等。在此过程中,培养学生认真做事的习惯。

(2)组织学生展示数据,鼓励学生从中发现信息。学生得到的信息可以是多方面的:虽然每天上学途中需要的时间可能是不一样的,但通过一个星期的调查可以知道“大概”需要多少时间;可以知道上学途中所需要的最长时间和最短时间等。

(3)组织学生进行交流,比较自己与他人的调查结果,从而获得更多信息:大多数同学上学途中所需要的时间,同学中最长的和最短的时间;可以将时间分段,统计每个时间段的学生人数,得到表格或者统计图。在此过程中,鼓励学生体会分析调查结果及得到结论的乐趣。

第二学段(4~6年级)

数与代数

例23 如果一个人的寿命是76岁,这个人一生的心跳大约有多少次?光速大约是30万千米/秒,光从太阳到达地球大约需要多长时间?如果把100万张纸叠加起来,会有珠穆朗玛峰那么高吗?

[说明] 参见例3。在计算的过程中,要合理利用数的单位和度量单位来减少位数。有些问题需要学生自己查找资料,如太阳到地球的距离、珠穆朗玛峰的海拔高度,这样的查找资料活动有利于学生养成调查研究的习惯。

例24 某学校为学生编号,设定末尾用1表示男生,用2表示女生,例如,200903321表示“2009年入学的三班的32号同学,该同学是男生”。那么,201004302表示什么?

[说明] 这个例子可以启发学生思考,编号提供给我们一些什么信息,比如,一个年级最多有多少个班,一个班最多有多少名学生。可以引导学生设计本学校的学生编号方案。还可以启发学生通过观察学生证的编号估计学校的学生数。

44

例25 说明,0.25和25%的含义。

[说明] 分数、小数和百分数都是有理数的常用表示方法,但含义是有所不同的。真分数通常表示部分与整体的

关系,如全班同学人数的;小数通常表示具体的数量,如一只铅笔0.25元;百分数是同分母(统一标准)的比值,

便于比较,如去年比前年增长21%、今年比去年增长25%。希望学生能够理解它们的含义,在生活中能够合理使用。

例26 李阿姨去商店购物,带了100元,她买了两袋面,每袋30.4元,又买了一块牛肉,用了19.4元,她还想买一条鱼,大一些的每条25.2元,小一些的的每条15.8元。请帮助李阿姨估算一下,她带的钱够不够买小鱼?能不能买大鱼?

[说明]本题有两问。第一问“够不够买小鱼”可以这样估算:

买一袋面不超过31元,两袋面不超过62元;买牛肉不超过20元;买小鱼不超过16元;总共不超过60+20+16=98(元),李阿姨的钱是够用的。

第二问“能不能买大鱼”可以这样估算:

买一袋面至少要30元,两袋面至少要60元;买牛肉至少要19元;买大鱼至少要25元;总共至少要60+19+25=104(元)。已经超过100元了,李阿姨不能买大鱼了。

这类问题在生活中很常见。从数学上看,第一问要判断100元是否超过三种物品的价格总和,适当放大;第二问要判断三种物品的价格总和是否超过100元,适当缩小,一般不需要精确计算,只需要估算就可以了。

例27 9.9×6.9比70小吗? [说明] 参考例26。

比1大吗?

可以把9.9放大为10,因为10×6.9=69,估算结果比70小。

可以把

缩小为,估算比大。

45