综上可知,存在直线l满足题意,此时直线l的方程为y?0. ……………12分 21、(12分)
解:(I)由题意知:h(x)?xe2?mx?1(x?R),则
h?(x)?2xe?mx?x2(?m)e?mx?e?mx(?mx2?2x),(x?R).
①当m?0时,令h'?x??0,有x?0;令h'?x??0,有x?0.故函数y?h?x?在?0,???上单调递增,在???,0?上单调递减.
②当m?0时,令h'?x??0,有0?x?在?0,22;令h'?x??0,有x?0或x?.故函数y?h?x?mm??2??2?,??上单调递增,在和??,0????上单调递减. ?mm???③当m?0时,令h'?x??0,有x?0或x?在?0,???和???,22;令h'?x??0,有?x?0.故函数y?h?x?mm??2??2?0?上单调递减. 上单调递增,在??,m??m?综上所述,当m?0时,函数y?h?x?的单调递增区间为?0,???,单调递减区间为???,0?;当m?0时,函数y?h?x?的单调递增区间为?0,??2??2??,单调递减区间为???,0?和?,???;当m??m???2??和?0,???,单调递减区间为m?m?0时,函数y?h?x?的单调递增区间为???,?2?0?; ………………………………………………5分 ?,?m?(II)①当m?0时,由h?x?=0可得x??1,有1?(0,4e),故m?0满足题意. ②当m?0时,若
21?2?时,由(I)知函数y?h?x?在?0,?上递增,在?(0,4e),即m?m2e?m??2??,4e?上递减. ?m?而h?0???1?0,令hmax?x??h?22?2?4?2?e?1≥0,有 ??m??2mmee???
若
12?m? 2ee21时,由(I)知函数y?h?x?在x?(0,4e)上递增.而??4e,???,即0?m?m2e11112?4em?1?0,令h(4e)?16ee解得m?而故0?m?. h?0???1?0,ln4e,ln4e?,
2e2e2e2e③当m?0时,由(I)知函数y?h?x?在x?(0,4e)上递增,由h?0???1?0,令
h(4e)?16e2e?4em?1?0,解得m?11ln4e,而ln4e?0,故m?0. 2e2e综上所述,m的取值范围是:?mm???2??. …………………12分. e?
22、(10分)
?x'?3cos?x'2y'2???1. 解:(I)由已知有?(?为参数),消去?得
34??y'?2sin??x??sin?将?代入直线l的方程得l:2x?y?8
y??cos??x'2y'2??1,直线l的普通方程为l:2x?y?8. ………5分 ? 曲线C2的方程为34(II)由(I)可设点P为(3cos?,2sin?),??[0,2?).则点P到直线l的距离为:
|4sin(??)?8||23cos??2sin??8|3d??
55故当sin(????3)?1,即?=1255?时d取最大值.
56此时点P的坐标为(?23、(10分)
3,1). ……………………………………10分 21??6x?4, x??3?1?解:(I)当k??3时,f(x)??2, ?x?1,
3? x?1?6x?4,??故不等式f(x)?4可化为:
1?1??x?1??x?1?x? ?或?3或? 3?6x?4?4?2?4????6x?4?4解得:x?0或x?4 3? 所求解集为:?xx?0或x??. ……………………………………5分
??4?3?(II)当x????k1?,?时,由k??1有:3x?1?0,3x?k?0 ?33?? f(x)?1?k
不等式f(x)?g(x)可变形为:1?k?x?4 故k?x?3对x???k9?k1?,?恒成立,即k???3,解得k?
34?33?9. 4而k??1,故?1?k?9??? k的取值范围是:??1,? ………………………………………………10分
4??