北师大版高中数学必修一第二章章末检测.docx 下载本文

& 鑫达捷致力于精品文档 精心制作仅供参考 &

第二章章末检测 班级__________ 姓名__________ 考号__________ 分数__________ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟. 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 21.已知集合A=R,f:x→x是A到B的映射,则2在B中的对应元素为( ) A.2 B.±2 C.±2 D.2 答案:D 2解析:(2)=2. 12.函数y=1-x+的定义域是( ) x+1A.(-∞,-1)∪(1,+∞) B.(-1,1) C.(-∞,-1)∪(-1,1] D.(-∞,-1)∪(-1,1) 答案:C 解析:1-x≥0且x+1≠0,∴x<-1或-1

& 鑫达捷致力于精品文档 精心制作仅供参考 &

解析:根据偶函数的性质判断. 27.如果函数f(x)=x+bx+c对任意实数t,都有f(2+t)=f(2-t),则( ) A.f(2)0时,f(x)>1,那么当x<0时,一定有( ) A.f(x)<-1 B.-11 D.00时,f(x)=x(1-x),则当x<0时,f(x)=( ) 3232A.-x-x B.x+x 3232C.-x+x D.x-x 答案:B 22解析:令x<0,则-x>0,∴f(-x)=x(1+x),又f(-x)=f(x),∴f(x)=x(1+x)32=x+x. 2??x-2x+2?x<1?,12.已知函数f(x)=?若f(2-x)>f(x),则x的取值范围是( ) ?-x-1?x≥1??A.(-1,+∞) B.(-∞,-1) C.(1,+∞) D.(-∞,1) 答案:C 解析:由题意知f(x)在R上是减函数,∴2-x1. 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 213.函数y=-x+4x-2在区间[1,4]上的最小值是________. 答案:-2 解析:求二次函数在给定区间上的最值,先求其图像的对称轴,再看给定区间和对称轴的关系. 14.函数f(x)=3ax+2b-2-a,x∈[-1,1],若f(x)≥1恒成立,则b的最小值是________. 3答案: 223 鑫达捷

& 鑫达捷致力于精品文档 精心制作仅供参考 &

解析:本题考查函数的单调性问题,a>0,f(x)单调递增,a<0,f(x)单调递减,a=0,f(x)为常数函数. x211115.已知函数f(x)=2,那么f(1)+f(2)+f()+f(3)+f()+f(4)+f()=1+x234________. 7答案: 21解析:观察x取值的规律,自变量取x和取时函数值和为1. x16.下列说法正确的有________. x的定义域为{x|x≥1}; x-12②函数y=x+x+1在(0,+∞)上是增函数; 3③函数f(x)=x+1(x∈R),若f(a)=2,则f(-a)=-2; ④已知f(x)是R上的增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b). ①函数y=答案:②④ 3解析:①中定义域为{x|x>1};③中f(a)=a+1=2,所以a=1,所以f(-a)=f(-1)=0. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y2=ax+c(a<0),给定区间D=(6,7). (1)为使物体落在D内,求a的取值范围; (2)若物体运动时又经过点P(2,8.1),问它这时能否落在D内?说明理由. 2解:(1)由于物体经过A(0,9),则9=c,故物体运动的轨迹方程为y=ax+9(a<0). 9919令y=0,则x= -.令6< -<7,解得a∈(-,-). aa44992(2)由于点P在y=ax+9上,则8.1=4a+9,解得a=-. 4019当a∈(-,-)时,物体落在D内, 449199∵-<-<-, 44049∴物体落在D内. 鑫达捷