数字式PWM可逆直流调速系统 下载本文

电力拖动自动控制系统课程设计

UR>1.5×2×U2=1.5×2×120=254.52 (V)

查表得取二极管型号为ZL06 3.2回路参数计算及元件选择 1.交流侧过压过流保护

再变压器副边并联电阻和电容,可以把变压器铁芯释放的磁场的能量转换为电场能量并储存再电容中,因为电容不可以使两端电压突变,所以可以达到抑制过电压的目的,而串入电阻的目的是为了在能量转换的过程中消耗一部分能量,从而防止因变压器漏感和并联电容构成的震荡回路再闭合时产生的过电压,抑制了LC回路出现震荡,电路图如下所示:

其中,C和R的计算公式为

2C≥6i%S/U22;R≥2.3*U2/S*Uk%/I%;

在公式中:S——变压器每相平均电压计算容量,单位VA U2—— 变压器二次侧相电压有效值,单位 V I%——变压器激磁电流百分数 Uk%——变压器的短路比 2.直流侧的过压过流保护

PWM变换器的直流电源由交流电网经不控的二极管整流器产生,并采用大电容C6滤波,以获得恒定的直流电压Us。由于电容容量较大,突加电源时相当于短路,势必产生很大的充电电流,容易损坏整流二极管,为了限制充电电流,在整流器和滤波电容之间传入电阻Rz,合上电源后,用延时开关将Rz短路,以免在运行中造成附加损耗。由于直流电源靠二极管整流器供电,不可能回馈电能,电动机制动时只好对滤波电容充

6

电力拖动自动控制系统课程设计

电,这式电容器两端电压升高称作“泵升电压”。为了限制泵升电压,用镇流电阻Rx消耗掉这些能量,在泵升电压达到允许值时接通VT5。

3快速熔断器短路保护

熔断器的作用:当电路发生故障或异常时,伴随着电流不断升高,可能损坏电路中的某些重要器件,也有可能烧毁电路甚至造成火灾。若安装熔断器,则熔断器就会在电流异常升高到一定高度的时候,自身熔断,切断电流,从而起到保护电路的作用。

为了防止由于电流过大而烧毁电力二极管,在二极管回路上加快速熔断器,在主回路中应加入熔断器,入下图所示:

3.3 PWM生成电路

PWM波可以由具有PWM输出的单片机通过编程来得以产生,也可以采用PWM专用要求过高,当他频率太低时,其产生的电磁噪声就比较大,在实际用用当中,当PWM 频率在 180KHz左右时,效果最好。在本系统内,采用两片四位数值比较器4585和一片12位串行计数器4040组成了PWM信号发生电路。

两片数值比较器4585,即如图生U2、U3、的A组接12位串行4040计数输出端Q2-Q9,而U2、U3的B组接到单片机的P1端口。只要改变P1 端口的输出值,就可以使得PWM信号的占空比发生变化,从而进行调控控制。

12位串行计数器4040的计数输入端CLK接到单片机C5晶振的震荡输出XTAL2。计数器4040每来8个脉冲,其输出Q2-Q9加1,当计数值小于或者等于单片机P1值X时,图中U2的(A>B)输出端保持低电平,而当计数值大于单片机P1端口输出值X时,图中的U2的(A>B)输出端保持高电平。随着计数值的增加,Q2-Q9由全\变为全“0”时,图中U2的(AB)端得到了PWM信号,它的占空比为(255-X/255*100%),那么只要改变X的数值,就可以相应的改变PWM信号的占空比,从而进行直流电机的转速控制。

使用这个方法是,单片机只需要根据调整量输出X的值,而PWM信号由三片通用数字电生成,这样可以使得软件大大简化,同时也有利于单片机系统的正常的工作。由

7

电力拖动自动控制系统课程设计

于单片机上电复位时P1端输出全为“1”,使得数值比较器4585的B组与P1端口相连,升速时P0端口输出X按一定规律减少,而降速时按一定规律增大。

3.3.1PWM功率放大驱动电路设计

该驱动电路采用了IR2110集成芯片,该集成电路具有较强的驱动能力和保护功能。

芯片IR2110性能的特点

IR2110时一种双通道高压,高速的功率器件栅极驱动的单片式集成驱动器。它把驱动高压侧和低压侧MOSFET或IGBT所需的绝大部分功能集成在一个高性能的封装内,外接很少的分立元件就能提供极快的功耗,它的特点在于,将输入逻辑信号转换成同相低阻输出驱动信号,可以驱动同一桥臂的两路输出,驱动能力强,响应速度快,工作电压比较高,可以达到600V,其内设欠压封锁,成本低,易于调试。高压侧驱动采用外部自举电容上电,与其他驱动电路相比,它在设计上大大减少了驱动变压器和电容的数目,使得MOSFET和IGBT的驱动电路设计大为简化,而且它可以实现对MOSFET和IGBT的最优驱动,还具有快速完整的保护功能。

IR2110的引脚图以及功能 引脚1(L0)与引脚7(HO):对应引脚12以及引脚10的两路驱动信号输出端,使用中,分别通过一电阻接主电路下上通道MOSFET的栅极,为了防止干扰,通常分别在引脚1与引脚2以及引脚7与引脚5之间并接一个10K?的电阻。

引脚2(COM):下通道MOSFET驱动输出参考地端,使用中,与引脚13(Vss)直接相连,同时接主电路桥臂下通道MOSFET的源极。

引脚3(Vcc):直接接用户提供的输出极电源的正极,并且通过一个较高品质的电容接引脚2。

引脚5(Vs):上通道MOSFET驱动信号输出参考地端,使用中,与主电路中上下通道被驱动MOSFET的源极相通。

引脚6(Vb):通过一阴极连接到该端阳极连接到引脚3的高反压快恢复二极管,与用户提供的输出极电源相连,对Vcc的参数要求为大于或等于-0.5V,而且小于或等于+20V。

引脚9(VDD):芯片输入级工作电源端,使用中,接用户为该芯片工作提供的高性能电源,为抗干扰,该端应通过一高性能去耦网络接地,该端可与引脚3 (Vcc)使用同一电源,也可以分开使用两个独立电源。

引脚10(HIN)与引脚12(LIN):驱动逆变中同桥臂上下两个功率MOS器件的驱动脉冲信号输入端。应用中,接用户脉冲形成部分的对应两路输出,对此两个信号的限制为Vss-0.5V至Vcc+0.5V,这里Vss与Vcc分别为连接到IR2110的引脚13(Vss)与引脚9(VDD)端的电压值。

引脚11(SD):保护信号输入端,当该引脚为高电平时,IR2110的输出信号全部被封锁,其对应的输出端恒为低电平,而当该端接低电平时,则IR2110的输出跟随引脚10与12而变化。

8

电力拖动自动控制系统课程设计

引脚13(Vss):芯片工作参考地端,使用中,直接与供电电源地端相连,所有去耦电容的一端应接该端,同时与引脚2直接相连。

引脚8、引脚14、引脚4:为空引脚。

4.3 PWM控制H桥双极性主电路

从上面的原理可以看出,产生高压侧门极驱动电压的前提是低压侧必须有开关的动作,在高压侧截止期间低压侧必须导通,才能够给自举电容提供充电的通路。因此在这个电路中,Q1、Q4或者Q2、Q3是不可能持续、不间断的导通的。我们可以采取双PWM信号来控制直流电机的正转以及它的速度。

将IC1的HIN端与IC2的LIN端相连,而把IC1的LIN端与IC2的HIN端相连,这样就可以使得两片芯片所输出的信号恰好相反。

在HIN为高电平期间,Q1、Q4导通,在直流电机上加正向的工作电压。其具体的操作步骤如下:

C1的L0为低电平和H0为高电平的时候,Q2截止,C1上的电压经过VB、IC内部电路和HO端家在Q4的山脊上,从而使得Q4导通。

电源经Q1至电动机的正极经过整个电流电机后再通过Q4到达零电位,完成整个的回路。此时直电机正转。

在HIN为低电平期间,LIN端输入高电平,Q2、Q3导通,在直流电机上加反向工作电压。具体操作如下:

当IC1的L0为高电平而H0为低电平的时候,Q2导通且Q1截止,此时Q2的漏极近乎于零电平,Vcc通过D1充电,为Q1的又一次导通做准备。同理可知,IC2的HO为高电平而L0为低电平,Q3导通且Q4截止,Q3的漏极近乎于零电平,刺死后Vcc通过D2向C3充电,为Q4的又一次导通作准备。

电源经Q3至电动机的负极经过整个直流电机后再通过Q2到达零电位,完成整个的回路。此时,直流电机反转。

因此电枢上的工作电压是双极性矩形脉冲波形,由于存在着机械惯性的缘故,

9

电力拖动自动控制系统课程设计

由电机转向和转速时由矩形脉冲电压的平均值来决定的。

设PWM波的周期为T,HIN为高电平的时间为t1,这里忽略死区时间,那么LIN为高电平的时间就为T-t1。HIN信号的占空比为D=,从而达到了改变Vout的目的。D在0-1之间变化,因此λ在±之间变化。如果我们连续改变λ那么便可实现电机正向的无级调速。

当λ=5时,Vout=0,此时电机转速为0; 当0.5<λ<1时,Vout为正,电机正转; 当λ=1时,Vout=V,电机正转全速运行。

3.4 励磁回路的设计

由380V引出,经三相整流桥变流,经过调压电阻,获得励磁电流 四、控制回路的设计

10