光伏发电和风力发电混合发电系统论文中英文资料对照外文翻译文献综述 下载本文

中英文资料对照外文翻译

译文

在混合光伏阵列中采用滑模技术的电源控制发电系统 摘要

变结构控制器来调节输出功率的一个独立的混合发电系统。该系统包括光伏发电和风力发电,存储电池组和一个变量的单相负载。控制律承认两种操作模式。 第一条用在当日晒度足够满足对电力的需求的情况下。第二运作模式应用在日晒度不足的时候。后者致使系统在最大功率操作点(MPOP)操作下存储尽可能多的能量。根据IncCond算法开发的一种新方法。滑模控制用于技术设计的控制律。这些技术提供了一个简单的控制律设计框架,并有助于它们自带的鲁棒性。最后,指导方针根据考虑为实际系统的设计。

1引言 可再生能源,如风力和太阳能被认为是非常前途的能源。它们拥有可以满足不断增加的世界能源需求的特点。另一方面,他们是基于无公害转换流程,它们需要的主要资源是取之不尽,用之不竭,并且免费的。对于远程、远离电网的地方,它往往是比用输电线路[1] 提供一个独立的电力来源拥有可行性。在这些电网中,在混合动力系统结合模块的基础上,可再生能源发电以柴油为动力的备用发电机已考虑ERED等效为一个可行的选择[2, 3]。然而,柴油发电机在孤立的燃料供应和其运作领域是相当麻烦,相比较可再生能源,显得不划算[4]。为了取代柴油备用发电机,独立的混合动力系统经常采用结合可再生能源来源的TARY型材,如风力和光伏发电,合适的存储设备,如电池。自存储成本仍然是一个重大的经济约束,通常光伏/风能/电池系统是用“适当”的大小以减少资本成本。

本文提出了一种控制策略,以规范的混合动力系统,包括光伏发电和风力发电,蓄电池组和可变负载的输出功率作为研究。控制可调整的光伏发电、风力发电,以满足负载和电池充电的电源要求。系统以在独立控制下的最大发电的主要目标。该控制器的设计开发,在之前的文献[5]中提过。因此,根据不同的大气条件,不同的光伏阵列控制律使用的范围不同。第一条用在暴晒的地方,运作模式足以提供的总功率需求,和风力发电一起适用。另一条控制律是在曝晒度不足情况下跟踪最大功率操作点(MPOP),使系统保持尽可能多的储存的能量。跟踪MPOP的方法是一个新的扩展版本下的IncCond算法[6]。

对于这两种操作模式设计控制律均使用滑模方法。这种技术很有吸引力,它简化了设计任务,并使控制器具有鲁棒性。此外,根据第二次的运作模式,这种技术提供的MPOP收敛速度最快。

2光伏电池的电气特性

光伏电池产生的瞬时电能取决于几个电池参数和变量的环境条件,如日照和温度。其电动行为可以用简单的非线性电流源串联与内在电池串联电阻()为基础。在这种模式下的电流源,可以通过下面表达式表示[6-8]:

其中是一个给定的曝晒下的电流,是电池反向饱和电流,和分别是输出电流和太阳能电池的电压,q是电子电荷,K为波尔兹曼常数,T为电池的温度。因子A看成理想的p-n结特性的电池偏差,值在的1到5之间[6]。此外,反向饱和电流()

和光照下()取决于日照和温度:

其中是在参考温度下的反向饱和,是在电池中所使用的半导体的带隙能量,是在参考温度下日照电流,短路电流温度系数,λ为日照系数其单位是。这些常量的典型值在附录(第8篇)中。 在图1中,是一个特定的光伏电池的电气特性。其中提出了把日照作为一个可变参数,并考虑两个不同日照下的温度值。图2所示,可以观察到的大气条件下MPOP对系统的影响。

在光伏电池阵列中,产生的电流表达式类似于eqn. 1:

其中代表并行模块的数量,由串联的电池构成。因此,由eqn.4可得简单的阵列发电的表达式:

从上述表达式得到,通过改变值可最大限度地提高发电,它由暴晒和电池温度而定。

3系统建模

光伏发电系统通常通过固态转换器连接负载。这种拓扑结构允许光伏发电系统调节其发电端电压。此外,为减少电能供应的概率,光伏阵列往往与其它发电系统(风电,柴油等)或一些储能系统(主要是电池)相结合。通过这种方式,

系统可以应付变化莫测的天气条件,增强系统的可靠性[4]。

混合发电系统拓扑的不同取决于它涉及的模块和系统的主要意图。根据本文考虑结构如图3。这种拓扑结构由蓄电池组确定直流母线电压。光伏阵列通过DC/DC降压转换器连接。在另一侧,直流母线通过高压变频器连接到负载。负载将直流侧电流作为输出电流。最后,电流表示风力发电模块,但在一般情况下,在混合动力系统中它要考虑到许多其他的综合效应来源。

混合动力系统的动态模型可以通过瞬时切换模式的DC / DC降压转换器建立,以下是描述方程:

(6b)

其中 和 ,是DC / DC转换器输出端子的电压和电流,u是开关控制信号,它只能采取离散值0(开关打开)或1(开关闭合)。

然后,考虑到电池组模型,包括一个理想的电压源(),电容器()和电阻() [9],整个动态串联系统模型可以写成:

(7b) (7c)

其中是上的电压,,和是可测量的电流。应当强调的是,这个模型是非线性的,u可表示为,f和g可表示为:

4滑模控制器的设计

最初的模块是为了控制所产生的功率满足光伏阵列的瞬时能量在高度干扰的环境下的电力需求。这些干扰不仅有气候的变化,也有负荷变化和电流的变化。 总的电力需求包括负载和电池组所需的功率。考虑到有效的充电和电池组的最长寿命,将一个给定的电流称为恒定电流。另一方面,电流需要保持完全充电状态(自放电补偿),称为浮充电流。因此,电池电流可看作恒定或浮充电流,根据电池组设定。

控制模块有两个操作模式。第一个是对应环境条件允许下的足够的光伏发电,用以满足总功率需求。在此模式下,对光伏发电系统加以规范,以匹配参考值:

第二个操作模式应用在当光伏发电系统是无法产生足够的电力满足。备在这种情况下控制律要用 MPOP来推进太阳能系统。

图4中是一个光伏阵列中特殊的曲线。此图描绘时考虑到了系统的平均模型。因此,曲线 A和B是不同情况下的图形。在模型下右侧操作光伏阵列特性(B点)更适合点,因为它允许更广泛的功率调节范围。另一方面,操作上左侧(A