第一章
1、ln2=0.69314718…,精确到 103 的近似值是多少?
-
解 精确到 103=0.001,即绝对误差限是 ?=0.05%,故至少要保留小数点后三位才可以。 ln2≈0.693。
-
2、设x1?6.1025,x2?80.115均具有5位有效数字,试估计由这些数据计算x1x2,
x1?x2的绝对误差限
11?1|??10?4, |x2?x?2|??10?3 ?1?6.1025, x?2?80.115 则有|x1?x解:记x22
?1x?2|?|x1x2?x?1x2?x?1x2?x?1x?2|?|x2||x1?x?1|?|x?1||x2?x?2| 所以 |x1x2?x11 ?80.116??10?4?6.1025??10?3?0.007057
2211?1?x?2)|?|x1?x?1|?|x2?x?2|??10?4??10?3?0.00055 |x1?x2?(x223、一个园柱体的工件,直径d为10.25?0.25mm,高h为40.00?1.00mm,则它的体积V的近似值、误差和相对误差为多少。 解:
V??d2h4?d2hV??3.142?10.252?40.004.000?3300.6mm2;4?d2h???(V)??2dh?(d)?d2?(h)?2?10.25?40.00?0.25?10.252?1.00?243.6,444V?3300.6?243.6mm2?(V)243.6?r(V)???0.0738?7.38%V3300.6,????第二章:
1、分别利用下面四个点的Lagrange插值多项式和Newton插值多项式N3(x),
计算L3(0.5)及N3(-0.5)
x f(x) -2 -1 -1 1 0 0 1 2 解:(1)先求Lagrange插值多项式 L3(x)?l0(x)y0?l1(x)y1?l2(x)y2?l3(x)y3 (1分)
1(x?x1)(x?x2)(x?x3)(x?1)(x?0)(x?1)l0(x)????(x?1)(x?1)x, (2分)
(x0?x1)(x0?x2)(x0?x3)(?2?1)(?2?0)(?2?1)6l1(x)?l2(x)?l3(x)?1(x?x0)(x?x2)(x?x3)(x?2)(x?0)(x?1)??(x?2)(x?1)x
(x1?x0)(x1?x2)(x1?x3)(?1?2)(?1?0)(?1?1)2(2分)
1(x?x0)(x?x1)(x?x3)(x?2)(x?1)(x?1)???(x?2)(x?1)(x?1) (2分)
(x2?x0)(x2?x1)(x2?x3)(0?2)(0?1)(0?1)2(x?x0)(x?x1)(x?x2)(x?2)(x?1)(x?0)1??(x?2)(x?1)x
(x3?x0)(x3?x1)(x3?x2)(1?2)(1?1)(1?0)6(2分)
11131(x?1)(x?1)x?(x?2)(x?1)x?(x?2)(x?1)x?x3?x2?x (1分) 623221所以 L3(0.5)? (1分)
4(2)再求Newton插值多项式 列均差表如下:
xyf[xi,xj]f[xi,xj,xk]f[x0,x1,x2,x3]L3(x)?x0x1x2x3?2?101?1102(2分)2?12(2分)3?232(2分)1(2分)
所以N3(x)??1?2(x?2)?331(x?2)(x?1)?(x?2)(x?1)x?x3?x2?x (2分) 2221N3(?0.5)? (1分)
2
2、求过下面四个点的Lagrange插值多项式L3(x)和Newton插值多项式N3(x)。
x f(x) -2 -2 -1 1 (1分)
0 1 1 -1 )解:(1)L3(x)=lo(x)yo+l1(x)y1+l2(x)y2+l3(x)y3
li(x)?(x?x0)(x?1)?(x?xi?1)(x?xi?1)?(x?xn)
(xi?x0)(xi?x1)?(xi?xi?1)(xi?xi?1)?(xi?xn)得出lo(x)??1x(x?1)(x?1)
6(2分)l1(x)?1x(x?2)(x?1)
2(2分)
l2(x)??1x(x?2)(x?1)(x?1)(2分)l3(x)?1x(x?2)(x?1)(2分)
26∴L3(x)?1x(x?1)(x?1)?1x(x?2)(x?1)?1(x?2)(x?1)(x?1)?1x(x?2)(x?1)
3226(1分)
(2)N3(x)?a0?a1(x?x0)?a2(x?x0)(x?x1)?a3(x?x0)(x?x1)(x?x2)(1分)
a0?f(x0)??2 (2分) a1?f(x0)?f(x1)?3
x0?x1(2分)
f(x0)?f(x1)f(x1)?f(x2)?x0?x1x1?x23,a3?1 a2???(2分)
6x0?x22∴N3(x)??2?3(x?2)? (2分)
3(x?2)(x?1)?1(x?2)(x?1)x(1分)
62第三章 1、令
0f(x)?e,?1?x?1,且设p(x)?a?ax,求
x01a,a
1使得
p(x)为f(x)在[-1,1]上的最佳平方逼近多项式。
2.已知数据对(7,3.1),(8,4.9),(9,5.3),(10,5.8),(11,6.1), (12,6.4),(13,
5.9)。试用二次多项式拟合这组数据。
解:y=-0.145x2+3.324x-12.794