《有理数》教案
教学目标
1、借助生活中的实例,从扩充运算的角度引进负数,然后使用正负数表示现实生活中具有相反意义的量.
2、经历从生活中发现数学问题,体会数学与现实生活的联系,培养自主探索能力并体验成功.
教学重难点
理解正、负数及有理数的意义.
教学过程
一、引入
1、观察一组图片回答下列问题:
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个代表队答题情况如下表:
算一算:每个代表队的得分是多少?
如果答对题所得的分数用正数表示,那么答错题所得的分数用什么表示呢? 2、你知道时差怎么表示吗?
二、讲授新课
1、想一想:
生活中你见过带有“–”号的数吗? 比0大的数叫做正数,如,5,1.2,……
在正数前面加上“–”号的数叫做负数,如–10,–3,…… 0既不是正数,也不是负数.
一个数前面带有的“+”号或“–”号是这个数的符号,正数前面的正号“+”可以省略不写.
2、熟练运用:
你会用正数、负数表示问题中的数据吗? 老师带领学生学习书上内容. 3、学习例题:
师生共同学习书上例1,学会将数据分类.
哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数? 引出“有理数”. 4、议一议:
举例学过的数,进行分类,并与同伴进行交流. 探讨其他分类方法.
师生共同完成练习将所有学过的数进行分类,并与同伴进行交流. 三、课堂小结
0即不是正数,也不是负数. 正数、负数与零统称为有理数.