2018-2019学年八年级第一学期期末
数学试卷
一、选择题:(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中只有一项是符合题目要求的,请将它的代号填在题后的括号内.)
1. 8的平方根是………………………………………………………………………【 】 D 2.下列运算中错误的是………………………………………………………………【 】 A 2?3?5 B 2?3?6 C 8?2?2 D (?3)2?3 3.下列图形中,既是轴对称图形又是中心对称图形的是…………………………【 】
A 4 B ±4 C 2
A B C D 4.如图1,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是…………………【 】 A 8 B 9 C 10 D 11
5.下列各式中属于最简二次根式的是……………………【 】 A
x2?1 B x2y5 C 12 D 0.5
图1 6.如图2所示,将正方形纸片三次对折后,沿图中AB线剪掉
一个等腰直角三角形,展开铺平得到的图形是…………………………【 】
图2
A B C D
7.计算411?3?8的结果是…………………………………………………【 】 23 A
3?2 B 3 C
3 D 33?2
8.某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为………………………………………………………………………【 】
1200120012001200??2 B ??2
(1?20%)xx(1?20%)xx1200120012001200??2 D ??2 C
x(1?20%)xx(1?20%)x A
9.如图3,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度
数为…………………………………………………【 】 A 30° B 36° C 40° D 45° 10.在下列各组二次根式中,是同类二次根式的 是………………………………………【 】
图3 A
3 和18 B 3 和
1 3 C
a2b 和ab2 D
a?1 和a?1
11.如图4,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=…………………【 】 A 30° B 60° C 45° D 90° 12.若(b?3)2?3?b,则b的取值范围是……………【 】
A b>3 B b<3 C b≥3 D b≤3 13.如图5,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=…………………【 】
A 3 B 4 C 5 D 6 14.如图6,△ABC的顶点A、B、C在边长为1的正方
图6 图5 图4 形网格的格点上,BD⊥AC于点D.则BD的长
为………………………………………………【 】 A
43235 B 5 C 5 D 5 543515.如图7,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S?PAB?S?PCD,则满足此条件的
点P……………………………………………………【 】 A 有且只有1个 B 有且只有2个 C 组成∠E的角平分线
D 组成∠E的角平分线所在的直线(E点除外)
16.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,
图7 1(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩x11形的一边长为x,则另一边长是,矩形的周长是2;当矩形成为正方形时,就(x?)xx111有x?(x>0),解得x=1,这时矩形的周长2=4最小,因此x?(x>0)(x?)xxx推导出“式子x?x2?9的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是( )
x A 2 B 6 C 8 D 10
二、填空题:(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上) 17.已知:?a?6??b2?2b?3?0,则2b2?4b?a的值为_____________. 18.如图8,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为_________.
19.如图9,一只蚂蚁从点A沿数轴向右直爬2个单位到
图8 2图9