19.(12分)解:若p为真,则??a2?4?0,故a??2或a?2.
?当x?1时,h(x)有最小值,h(x)min?h(1)?e?e?a?a.
22??x?R,h(x)?0恒成立,?h(x)min?0,即a?0.
?“p?q”为真,?p为真且q为真.??从而所求实数a的取值范围为[2,??).
20.(12分)
?a??2或a?2, 解得a?2.
a?0,?ππTπ2ππ3
-?=,则=4×,∴ω=, (1)由图知A=2,=-?46?6?3ω323π3ππ
x+φ?.又f??=2sin?×+φ?=2sin?+φ?=2, ∴f(x)=2sin??2??6??26??4?πππ3πππ
∵0<φ<,<φ+<,∴φ+=,
244442
代点时优先代最值点,因为代零点时还要考虑上升还是下降段. 3π?π
即φ=,∴f(x)=2sin??2x+4?. 4
ππ3π3π
x-?=2sin??x-12?+?=2sin?x+?, (2)由(1)可得f??42??12??28????3x+π?1-cos4???x-π??2=4×?3x+π?, ∴g(x)=?f=2-2cos4???12???2
ππππ5π
-,?,∴-≤3x+≤, ∵x∈??63?444ππ
∴当3x+=π,即x=时,g(x)max=4.
44
21.(12分)解:(Ⅰ)当a?0时,f?x??lnx?x2,其定义域为?0,???,f??x??所以f?x?在?1,e?上是增函数,当x?1时,f?x?min?f?1??1. 故函数f?x?在?1,e?上的最小值是1.
1?2x?0, x2x2?2ax?1,g?x??2x2?2ax?1. (Ⅱ)f??x??x(ⅰ)当a?0时,在?0,???上g?x??0恒成立, 此时f??x??0,函数f?x?无极值点;
(ⅱ)当a?0时,若??4a?8?0,即0?a?22时,
在?0,???上g?x??0恒成立,此时f??x??0,函数f?x?无极值点;
a?a2?2a?a2?2若??4a?8?0,即a?2时,易知当时,g?x??0,此时f??x??0; ?x?222a?a2?2a?a2?2当0?x?或x?时,g?x??0,此时f??x??0.
22a?a2?2a?a2?2所以当a?2时,是函数f?x?的极大值点,是函数f?x?的极小值点, x?x?22a?a2?2综上,当a?2时,函数f?x?无极值点;当a?2时,x?是函数f?x?的极大值点,
2a?a2?2是函数f?x?的极小值点. x?222.(12分)解:(Ⅰ)?f(x)?ln(1?x)?x?1?aax(a?0),?f'(x)? 2x?1(x?1)f'(1)?0 即a?2
(Ⅱ) ?f(x)?0在?0,???上恒成立, ?f(x)min?0
当0?a?1时,f(x)?0在?0,???上恒成立,即f(x)在?0,???上为增函数,
'?f(x)min?f(0)?0成立,即0?a?1
当a?1时,令f'(x)?0,则x?a?1,令f'(x)?0,则0?x?a?1,
即f(x)在[0,a?1)上为减函数,在(a?1,??)上为增函数,
?f(x)min?f(a?1)?0,又f(0)?0?f(a?1),则矛盾.
综上,a的取值范围为(0,1].
20162017120172017)?,只需证()?e 2017e2016201720171?1,即证ln?两边取自然对数得,2017ln, 2016201620172017111??0,即证ln(1?)??0, 即证ln2016201720161?2016x由(Ⅱ)知a?1时,f(x)?ln(1?x)?在?0,???单调递增.
x?11111?0,f(0)=0, 所以f()?ln(1?)??f(0)?0, 又
1?2016201620161?2016201620171)?成立. 所以(2017e(Ⅲ)要证(