专题5 光合作用和呼吸作用与碳循环 下载本文

www.kj008.net ------华夏教育资源库

学科: 生物 年级:高三

版本:冲刺版 期数:2338

本周教学内容:专题五 光合作用和呼吸作用与碳循环

和能量流动

【知识联系框架】

【重点知识联系与剖析】 一、光合作用

1.光合作用的实质

通过光合作用的光反应把光能转变成活跃的化学能,通过暗反应把二氧化碳和水合成有机物,同时把活跃的化学能转变成稳定的化学能贮存在有机物中。 2.光合色素及其物理性质与功能

叶绿体是进行光合作用的细胞器。叶绿体中的光合色素有叶绿素和类胡萝卜素两类。叶绿素分为叶绿素a和叶绿素b两种,均不溶于水,但易溶于酒精、丙酮、石油醚等有机溶剂中。叶绿素a的分子式为C55H72O5N4Mg,呈蓝绿色;叶绿素b的分子式为C55H70O6N4Mg,呈黄绿色。叶绿素吸收光的能力极强,如果把叶绿素的丙酮提取液放在光源与分光镜之间,可以看到光谱中有些波长的光被吸收了。因此,在光谱上就出现了黑线或暗带,这种光谱叫吸收光谱。叶绿素吸收光谱的最强区域有两个:一个是在波长为640nm~660nm的红光部分,另一个在波长为430nm~450nm的蓝紫光部分。对其他光吸收较少,其中对绿光吸收最少,由于叶绿素吸收绿光最少,所以叶绿素的溶液呈绿色。我们在做叶绿素的提取和分离实验时,还会看到一种现象:试管中的叶绿素的丙酮提取液在透射光下是翠绿色的,而在反射光下是棕红色的,这是叶绿素的荧光现象。叶绿体中的类胡萝卜素包括胡萝卜素和叶黄素两种,颜色分别是橙黄色和黄色,功能是吸收蓝紫光。除此之外还具有保护叶绿素,防止强烈光照伤害叶绿素的功能。

植物叶子呈现的颜色是叶子中各种色素的综合表现。其中主要是绿色的叶绿素和黄色的类胡萝卜素之间的比例。一般来说,正常叶子的叶绿素和类胡萝卜素的分子比例约为4∶1,叶绿素a与叶绿素b的比约为3∶1,叶黄素与胡萝卜素之比约2∶1,由于叶绿素比黄色的类胡萝卜素多,所以正常的叶子总是呈绿色。秋天,因低温、紫外线强烈等外界因素和叶片衰老等内部因素,叶绿素的合成速度低于分解的速度,叶绿素含量相对减少,而类胡萝卜素分子比较稳定,不易破坏。所以叶片逐渐呈现类胡萝卜素的颜色——黄色。至于红叶,是因为秋天降温,体内积累较多的糖分以适应寒冷,体内可溶性糖多了,就形成了较多的花色素,同时秋天叶子内的pH值改变,叶内呈现酸性,使花色素表现出红色。 3.先合作用的过程

www.kj008.net -------华夏教育资源库

www.kj008.net ------华夏教育资源库

光反应:叶绿体中色素吸收的光能主要用于光合作用的光反应,在光反应阶段主要进行2个反应,一是叶绿素吸收光能后受激发而失去电子后,从水中夺取电子,使水分解,经一系列过程后,生成还原态的氢、NADPH和O2,这个过程为水的光解,方程 可简写为:2H2O

?色素吸收的光能?????4[H]+O2;二是将电子传递给NADP的过程中,将 ADP和 Pi合成 ATP,这个

+

过程称为光合磷酸化过程,方程式可简单表示为:ADP+Pi

+

?色素吸收的光能?????ATP。最后电子传

递给NADP形成NADPH。这 2个过程都是在基粒片层结构薄膜上进行的。光反应的产物共有3种:[H]、ATP和O2其中[H]和ATP是供给暗反应的原料,O2则释放到大气中,或被呼吸作用所利用。光反应的进行必须依赖于色素吸收的光能,所以必须在光下才能进行。

暗反应:是在叶绿体的基质中进行的。进行暗反应必须具备4个基本条件:CO2、酶、[H]和ATP。其中[H]和 ATP来自光反应,CO2主要来自大气中,酶是叶绿体本身所固有的。暗反应与光没有直接的关系,只要具备上述4个基本条件,不论有光和无光都能进行。在暗反应过程中,首先要用五碳化合物(简写为C5,其化学名称为1,5-二磷酸核酮糖,其中有高能磷酸键)固定CO2,并迅速生成2分子三碳化合物(简写为C3,化学名称为3-磷酸甘油酸),然后在NADPH([H]还原和ATP提供能量下被还原成糖类(CH2O),在此过程中还将再生出五碳化合物,所以暗反应是一个循环过程。五碳化合物的再生也需要光反应提供ATP。

光合作用的意义:第一、制造有机物,实现巨大的物质转变,将CO2和H2O合成有机物;第二、转化并储存太阳能;第三、净化空气,使大气中的O2和CO2含量保持相对稳定;第四、对生物的进化具有重要作用,在绿色植物出现以前,地球上的大气中并没有氧,只是在距今 12亿至30亿年以前,绿色植物在地球上出现并逐渐占有优势后,地球的大气中才逐渐含有氧,从而使地球上其他进行有氧呼吸的生物得以发生和发展。由于大气中的一部分氧转化为臭氧(O3)。臭氧在大气上层形成的臭氧层,能够有效地滤去太阳辐射中对生物具有强烈破坏作用的紫外线,从而使水生生物登陆成为可能。经过长期的生物进化过程,最后才出现广泛分布的自然界的各种动植物。

影响光合作用的因素:光合作用是在植物有机体的内部和外部的综合条件的适当配合下进行的。因此内外条件的改变也就一定会影响到光合作用的进程或光合作用强度的改变。影响光合作用强度的因素主要有光照强度、CO2浓度、温度和矿质营养。

①光照强度:植物的光合作用强度在一定范围内是随着光照强度的增加,同化CO2的速度也相应增加,但当光照强度达到一定时,光合作用的强度不再随着光照强度的增加而增强。植物在进行光合作用的同时也在进行呼吸作用,当植物在某一光照强度条件下,进行光合作用所吸收的CO2与该温度条件下植物进行呼吸作用所释放的CO2量达到平衡时,这一光照强度就称为光补偿点,这时光合作用强度主要是受光反应产物的限制。当光照强度增加到一定强度后,植物的光合作用强度不再增加或增加很少时,这一光照强度就称为植物光合作用的光饱和点,此时的光合作用强度是受暗反应系统中酶的活性和CO2浓度的限制在图5-1。

www.kj008.net -------华夏教育资源库

www.kj008.net ------华夏教育资源库

图5-1

光补偿点在不同的植物是不一样的,主要与该植物的呼吸作用强度有关,与温度也有关系。一般阳生植物的光补偿点比阴生植物高。光饱和点也是阳生植物高于阴生植物。所以在栽培农作物时,阳生植物必须种植在阳光充足的条件下才能提高光合作用效率,增加产量;而阴生植物应当种植在阴湿的条件下,才有利于生长发育,光照强度大,蒸腾作用旺盛,植物体内因失水而不利于其生长发育,如人参、三七、胡椒等的栽培,就必须栽培于阴湿的条件下,才能获得较高的产量。

植物在进行光合作用的同时也在进行着呼吸作用,总光合作用是指植物在光照下制造的有机物的总量(吸收的CO2总量)。净光合作用是指在光照下制造的有机物总量(或吸收的CO2总量)中扣除掉在这一段时间中植物进行呼吸作用所消耗的有机物(或释放的CO2)后,净增的有机物的量。

②温度:植物所有的生活过程都受温度的影响,因为在一定的温度范围内,提高温度可以提高酶的活性,加快反应速度。光合作用也不例外,在一定的温度范围内,在正常的光照强度下,提高温度会促进光合作用的进行。但提高温度也会促进呼吸作用。如图5-2所示。所以植物净光合作用的最适温度不一定就是植物体内酶的最适温度。

图5-2

③CO2浓度:CO2是植物进行光合作用的原料,只有当环境中的CO2达到一定浓度时,植物才能进行光合作用。植物能够进行光合作用的最低CO2浓度称为CO2补偿点,即在此CO2浓度条件下,植物通过光合作用吸收的CO2与植物呼吸作用释放的CO2相等。环境中的CO2低于这一浓度,植物的光合作用就会低于呼吸作用,消耗大于积累,长期如此植物就会死亡。一般来说,在一定的范围内,植物光合作用的强度随CO2浓度的增加而增加,但达到一定浓度后,光合作用强度就不再增加或增加很少,这时的CO2浓度称为CO2的饱和点。如 CO2浓度继续升高,光合作用不但不会增加,反而要下降,甚至引起植物CO2中毒而影响植物正常的生长发育。如图5-3所示。

图5-3

④必需矿质元素的供应:绿色植物进行光合作用时,需要多种必需的矿质元素。如氮是

++

催化光合作用过程各种酶以及NADP和ATP的重要组成成分,磷也是NADP和ATP的重要组成成分。科学家发现,用磷脂酶将离休叶绿体膜结构上的磷脂水解掉后,在原料和条件都具备的情况下,这些叶绿体的光合作用过程明显受到阻碍,可见磷在维持叶绿体膜的结构和功能上起着重要的作用。又如绿色植物通过光合作用合成糖类,以及将糖类运输到块根、块茎和

www.kj008.net -------华夏教育资源库