直线和圆的位置关系第一课时 教案 1doc 下载本文

直线和圆的位置关系

教学目标 (一)教学知识点

1.理解直线与圆有相交、相切、相离三种位置关系. 2.了解切线的概念,探索切线与过切点的直径之间的关系. (二)能力训练要求

1.经历探索直线与圆位置关系的过程,培养学生的探索能力.

2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.

(三)情感与价值观要求

通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点

经历探索直线与圆位置关系的过程. 理解直线与圆的三种位置关系. 了解切线的概念以及切线的性质. 教学难点

经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系. 探索圆的切线的性质. 教学方法

教师指导学生探索法. 教具准备 投影片三张

第一张:(记作§3.5.1A) 第二张:(记作§3.5.1B) 第三张:(记作§3.5.1C) 教学过程

Ⅰ.创设问题情境,引入新课

[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些? [生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内.

[师]本节课我们将类比地学习直线和圆的位置关系. Ⅱ.新课讲解

1.复习点到直线的距离的定义

[生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离.

如下图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离.

2.探索直线与圆的三种位置关系

[师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?

[生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系.

[师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢? [生]有三种位置关系:

[师]直线和圆有三种位置关系,如下图:

它们分别是相交、相切、相离.

当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tangent

line).

当直线与圆有两个公共点时,叫做直线和圆相交. 当直线与圆没有公共点时,叫做直线和圆相离.

因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗? [生]当直线与圆有唯一公共点时,这时直线与圆相切; 当直线与圆有两个公共点时,这时直线与圆相交; 当直线与圆没有公共点时,这时直线与圆相离.

[师]能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢?

[生]如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,d<r;当直线与圆相切时,d=r;当直线与圆相离时,d>r,因此可以用d与r间的大小关系断定直线与圆的位置关系.

[师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定.

投影片(§3.5.1A) (1)从公共点的个数来判断:

直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.

(2)从点到直线的距离d与半径r的大小关系来判断:

d<r时,直线与圆相交; d=r时,直线与圆相切; d>r时,直线与圆相离.

投影片(§3.5.1B)

[例1]已知Rt△ABC的斜边AB=8cm,AC=4cm.

(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?

(2)以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?

分析:根据d与r间的数量关系可知: