排列组合问题的类型及解答策略 下载本文

排列组合问题,联系实际,生动有趣,但题型多样,思路灵活,不易掌握。实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。本文介绍十二类典型排列组合问题的解答策略,供参考。

一、相邻问题捆绑法

例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( )种 A. 720 B. 360 C. 240 D. 120

解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有

种排法;甲、乙两人之间有

种排法。由分步计数原理可知,共有

=240

种不同排法,选C。

评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。

二、相离问题插空法

例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)

解:先将6个歌唱节目排好,其不同的排法为端共7个位置中再排4个舞蹈节目,有目不得相邻的排法为

种。

种;这6个歌唱节目的空隙及两

种排法。由分步计数原理可知,任何两个舞蹈节

评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。

三、定序问题缩倍法

例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。

解:5面旗全排列有

种挂法,由于3面红旗与2面白旗的分别全排列均只能算

作一次的挂法,故共有不同的信号种数是缩小倍数的方法求解比较方便快捷。

四、标号排位问题分步法

=10(种)。

评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。这类问题用

例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有( )

A. 6种 B. 9种 C. 11种 D. 23种

解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。所以先将1填入2至4号的3个方格里有

种填法;第二步把被填入方格的对应数字,填入其它3个方格,又有

种填

法;第三步将余下的两个数字填入余下的两格中,只有1种填法。故共有3×3×1=9种填法,而选B。

评注:把元素排在指定号码的位置上称为标号排位问题。求解这类问题可先把某个元素按规定排放,第二步再排另一个元素,如此继续下去,依次即可完成。

五、有序分配问题逐分法

例5 有甲、乙、丙三项任务,甲需由2人承担,乙、丙各需由1人承担,从10人中选派4人承担这三项任务,不同的选法共有( )种

A. 1260 B. 2025 C. 2520 D. 5040

解:先从10人中选出2人承担甲项任务,再从剩下8人中选1人承担乙项任务,最后从剩下7人中选1人承担丙项任务。根据分步计数原理可知,不同的选法共有=2520种,故选C。

评注:有序分配问题是指把元素按要求分成若干组,常采用逐步下量分组法求解。 六、多元问题分类法

例6 由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )

A. 210个 B. 300个 C. 464个 D. 600个 解:按题意个位数只可能是0,1,2,3,4共5种情况,符合题意的分别有

个。合并总计,共有=300(个),故选B。

评注:元素多,取出的情况也多种,可按结果要求,分成互不相容的几类情况分别计算,最后总计。

另解:先排首位,不用0,有于十位数字,即顺序固定,故有合要求的六位数

种方法;再同时排个位和十位,由于个位数字小

种排法。故共有符

种方法;最后排剩余三个位置,有

=300(个)。

七、交叉问题集合法

例7 从6名运动员中选出4名参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方法?

解:设全集U={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式可得参赛方法共有

=252(种)。

评注:某些排列组合问题几部分之间有交集,可用集合中求元素个数的公式:

来求解。

八、定位问题优限法

例8 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( )

A. B. C. D.

解:先把3种品种的画看成整体,而水彩画不能放在头尾,故只能放在中间,则油画与国画有为

种放法。再考虑油画之间与国画之间又可以各自全排列。故总的排列的方法种,故选D。

评注:所谓“优限法”,即有限制条件的元素(或位置)在解题时优先考虑。 九、多排问题单排法

例9 两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一座位),则不同的坐法种数为( )

A.

B.

C.

D.

解:此题分两排坐,实质上就是8个人坐在8个座位上,故有D。

评注:把元素排成几排的问题,可归结为一排考虑。 十、至少问题间接法

种坐法,所以选

例10 从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有( )种

A. 140 B. 80 C. 70 D. 35

解析:在被取出的3台中,若不含甲型或不含乙型的抽取方法均不合题意,故符合题意的取法有

=70种,选C。

评注:含“至多”或“至少”的排列组合问题,通常用分类法。本题所用的解法是间接法,即排除法(总体去杂),适用于反面情况明确且易于计算的情况。

十一、选排问题先取后排法

例11 四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有_________种(用数字作答)。

解:先从四个小球中取两个放在一起,

种不同的取法;再把取出的两个小球与

种不同的放法。依据

另外两个小球看作三堆,并分别放入四个盒子中的三个盒子中,有分步计数原理,共有

种不同的方法。

评注:这是一道排列组合的混合应用题目,这类问题的一般解法是先取(组合)后排(排列)。本题正确求解的关键是把四个小球中的两个视为一个整体,如果考虑不周,就会出现重复和遗漏的错误。

十二、部分符合条件淘汰法

例12 四面体的顶点及各棱中点共有10个点,在其中取4个不共面的点,不同的取法共有( )

A. 150种 B. 147种 C. 144种 D. 141种