(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由
第6页(共28页)
2016年浙江省金华市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)(2016?金华)实数﹣的绝对值是( ) A.2
B.
C.﹣
D.﹣
【考点】实数的性质.
【分析】根据负数的绝对值是它的相反数,可得答案. 【解答】解:﹣的绝对值是. 故选:B.
【点评】本题考查了实数的性质,负数的绝对值是它的相反数. 2.(3分)(2016?金华)若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )
A.a<0 B.ab<0 C.a<b D.a,b互为倒数 【考点】实数与数轴.
【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案. 【解答】解:A、a<0,故A正确; B、ab<0,故B正确; C、a<b,故C正确;
D、乘积为1的两个数互为倒数,故D错误; 故选:D. 【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键. 3.(3分)(2016?金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( )
A.Φ45.02 B.Φ44.9 C.Φ44.98 D.Φ45.01 【考点】正数和负数.
【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可. 【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,
∴零件的直径的合格范围是:44.96≤零件的直径≤5.03. ∵44.9不在该范围之内, ∴不合格的是B. 故选:B. 【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.
第7页(共28页)
4.(3分)(2016?金华)从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )
A. B.
C. D.
【考点】简单几何体的三视图.
【分析】直接利用左视图的观察角度,进而得出视图.
【解答】解:如图所示:∵从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,
∴该几何体的左视图为:.
故选:C.
【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.
5.(3分)(2016?金华)一元二次方程x﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是( )
A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2 【考点】根与系数的关系.
2
【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1?x2==﹣2”,再结合四个选项即可得出结论.
2
【解答】解:∵方程x﹣3x﹣2=0的两根为x1,x2, ∴x1+x2=﹣=3,x1?x2==﹣2,
∴C选项正确. 故选C.
【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1?x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键. 6.(3分)(2016?金华)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
第8页(共28页)
A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD 【考点】全等三角形的判定.
【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案. 【解答】解:由题意,得∠ABC=∠BAD,AB=BA, A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;
B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;
C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;
D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;
故选:A.
【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 7.(3分)(2016?金华)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A.
B.
C.
D.
【考点】列表法与树状图法.
【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率;
【解答】解:解:可能出现的结果 小明 打扫社区卫生 打扫社区卫生 参加社会调查 参加社会调查 小华 打扫社区卫生 参加社会调查 参加社会调查 打扫社区卫生 由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种, 则所求概率P1=,
故选:A.
【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 8.(3分)(2016?金华)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( )
第9页(共28页)
A.米
2
B.米
2
C.(4+)米 D.(4+4tanθ)米
22
【考点】解直角三角形的应用.
【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果. 【解答】解:在Rt△ABC中,BC=AC?tanθ=4tanθ(米), ∴AC+BC=4+4tanθ(米), ∴地毯的面积至少需要1×(4+4tanθ)=4+tanθ(米); 故选:D.
【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键. 9.(3分)(2016?金华)足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在( )
2
A.点C B.点D或点E
C.线段DE(异于端点) 上一点 D.线段CD(异于端点) 上一点 【考点】角的大小比较.
【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可. 【解答】解:连接BC,AC,BD,AD,AE,BE,
通过测量可知∠ACB<∠ADB<∠AEB,所以射门的点越靠近线段DE,角越大,故最好选择DE(异于端点) 上一点, 故选C.
【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置. 10.(3分)(2016?金华)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )
第10页(共28页)