拉力T= mAg, 如图3.1(B)所示,算出mB的加速度a?,则
(A) a > a ?. (B) a = a ?. (C) a < a ?. (D) 无法判断.
3. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图3.2所示,斜面与地面之间无摩擦,则
(A) 斜面保持静止. (B) 斜面向左运动. (C) 斜面向右运动.
(D) 无法判断斜面是否运动.
4. 如图3.3所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m和2m的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m及2m的运动过程中,弹簧秤的读数为
(A) 3mg . (B) 2mg. (C) 1mg . (D) 8mg / 3.
5. 如图3.4所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将
(A) 向上作加速运动. (B) 向上作匀速运动.
(C) 立即处于静止状态.
(D) 在重力作用下向上作减速运动. 二.填空题
1. 如图3.5所示,一根绳子系着一质量为m的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出
T cos??mg = 0 (1) 也有人在沿绳子拉力方向求合力写出
T ? mg cos?= 0 (2)
显然两式互相矛盾,你认为哪式正确?答 .理由是 .
2. 如图3.6所示,一水平圆盘,半径为r,边缘放置一质量为m的物体A,它与盘的静摩擦系数为?,圆盘绕中心轴OO?转动,当其角速度?小于或等于 时,物A不致于飞出.
3. 一质量为m1的
物体拴在长为l1的轻绳上,滑水平桌面上,另一质量为绳与m1相接,二者均在桌速圆周运动,如图3.7所示.
T1= ;
36 / 111
绳子的另一端固定在光m2的物体用长为l2的轻面上作角速度为?的匀则l1, l2两绳上的张力
T2= . 三.计算题
1. 一条轻绳跨过轴承摩擦可忽略的轻滑轮,在绳的一端挂一质量为m1的物体,在另一侧有一质量为m2的环,如图3.8所示.求环相对于绳以恒定的加速度a2滑动时,物体和环相对地面的加速度各为多少?环与绳之间的摩擦力多大?
2. 质量为m的子弹以速度v0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k,忽略子弹的重力,求
(1) 子弹射入沙土后,速度随时间变化的函数关系式; (2) 子弹射入沙土的最大深度.
练习四 动量守恒定律动能定理
一.选择题
1. 以下说法正确的是
(A) 大力的冲量一定比小力的冲量大; (B) 小力的冲量有可能比大力的冲量大; (C) 速度大的物体动量一定大; (D) 质量大的物体动量一定大.
2. 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体 (A) 动量守恒,合外力为零. (B) 动量守恒,合外力不为零.
(C) 动量变化为零,合外力不为零, 合外力的冲量为零. (D) 动量变化为零,合外力为零.
3. 一弹性小球水平抛出,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则
(A) 此过程动量守恒,重力与地面弹力的合力为零.
(B) 此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反. (C) 此过程动量守恒,合外力的冲量为零. (D) 此过程前后动量相等,重力的冲量为零.
4. 质量为M的船静止在平静的湖面上,一质量为m的人在船上从船头走到船尾,相对于船的速度为v..如设船的速度为V,则用动量守恒定律列出的方程为
(A) MV+mv = 0. (B) MV = m (v+V). (C) MV = mv. (D) MV+m (v+V) = 0. (E) mv +(M+m)V = 0. (F) mv =(M+m)V.
37 / 111
5. 长为l的轻绳,一端固定在光滑水平面上,另一端系一质量为m的物体.开始时物体在A点,绳子处于松弛状态,物体以速度v0垂直于OA运动,AO长为h.当绳子被拉直后物体作半径为l的圆周运动,如图4.1所示.在绳子被拉直的过程中物体的角动量大小的增量和动量大小的增量分别为
(A) 0, mv0(h/l-1). (B) 0, 0.
(C) mv0(l-h ), 0. (D) mv0(l-h, mv0(h/l-1). 二.填空题
1. 力F= x i+3y2j (S I) 作用于其运动方程为x = 2t (S I) 的作直线运动的物体上, 则0~1s内力F作的功为A= J.
2. 完全相同的甲乙二船静止于水面上,一人从甲船跳到乙船,不计水的阻力, 则甲船的速率v1与乙船的速率 v2相比较有:v1 v2(填?、?、?), 两船的速度方向 .
3. 一运动员(m=60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M=140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远 m. 三.计算题
1. 一质点作半径为r ,半锥角为?的圆锥摆运动,其质量为m,速度为v0如图4.2所示.若质点从a到b绕行半周,求作用于质点上的重力的冲量I1和张力T的冲量I2.
2. 一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面,如果把绳的上端放开,绳将落在桌面上,试求在绳下落的过程中,任意时刻作用于桌面的压力.
练习五 机械能守恒定律碰撞
一.选择题
1. 以下说法正确的是
(A) 功是标量,能也是标量,不涉及方向问题; (B) 某方向的合力为零,功在该方向的投影必为零; (C) 某方向合外力做的功为零,该方向的机械能守恒; (D) 物体的速度大,合外力做的功多,物体所具有的功也多. 2. 以下说法错误的是
(A) 势能的增量大,相关的保守力做的正功多;
(B) 势能是属于物体系的,其量值与势能零点的选取有关; (C) 功是能量转换的量度;
(D) 物体速率的增量大,合外力做的正功多.
38 / 111
3. 如图5.1,1/4圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下, M与m间有摩擦,则
(A) M与m组成系统的总动量及水平方向动量都守恒, M、m与地组成的系统机械能守恒;
(B) M与m组成系统的总动量及水平方向动量都守恒, M、m与地组成的系统机械能不守恒;
(C) M与m组成的系统动量不守恒, 水平方向动量不守恒, M、m与地组成的系统机械能守恒;
(D) M与m组成的系统动量不守恒, 水平方向
动量守恒, M、m与
4. 悬挂在天花在平衡位置O以上然放开,物体自己经
(A) A1 > A2. (B) A1 < A2. (C) A1 = A2. (D) 无法确定.
5. 一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是:
(A) 汽车的加速度是不变的; (B) 汽车的加速度与它的速度成正比; (C) 汽车的加速度随时间减小; (D) 汽车的动能与它通过的路程成正比. 二.填空题
1. 如图5.3所示,原长l0、弹性系数为k的弹簧悬挂在天花板上,下端静止于O点;悬一重物m后,弹簧伸长x0而平衡,此时弹簧下端静止于O?点;当物体m运动到P点时,弹簧又伸长x.如取O点为弹性势能零点,P点处系统的弹性势能为 ;如以O?点为弹性势能零点,则P点处系统的弹
性势能为 ;如取O?点为重力势能与弹性势能零点,则P点处地球、重物与弹簧组成的系统的总势能为 .
2. 己知地球半径为R,质量为M.现有一质量为m的物体处在离地面高度2R处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 ;如取无穷远处的引力势能为零,则系统的引力势能为 .
3. 如图5.4所示, 一半径R=0.5m的圆弧轨道, 一质量为m=2kg的物体从轨道的上端A点下滑, 到达底部B点时的速度为v=2 m/s,
则重力做功为 ,正压力做功为 ,摩擦力做功为 .正压N能否写成N = mg cos? = mg sin?(如图示C点)?答: .
39 / 111
地组成的系统机械能不守恒.
板上的弹簧下端挂一重物M,如图5.2所示.开始物体一点A. (1)手把住M缓慢下放至平衡点;(2)手突过平衡点.合力做的功分别为A1、A2 ,则
三.计算题
1. 某弹簧不遵守胡克定律,若施力F,则相应伸长为x , 力与伸长x的关系为
F=52.8 x+38.4x2 (SI)
求:(1) 将弹簧从定长x1 = 0.50m拉伸到定长x2 = 1.00m时,外力所需做的功.
(2) 将弹簧放在水平光滑的桌面上,一端固定,另一端系一个质量为2.17kg的物体,然后将弹簧拉伸到一定长x2 = 1.00m,再将物体由静止释放,求当弹簧回到x1 = 0.50m时,物体的速率.
(3) 此弹簧的弹力是保守力吗?为什么?
2. 如图5.5所示,甲乙两小球质量均为m,甲球系于长为l的细绳一端,另一端固定在O点,并把小球甲拉到与O处于同一水平面的A点.乙球静止放在O点正下方距O点为l的B点.弧BDC为半径R=l/2的圆弧光滑轨道,圆心为O?.整个装置在同一铅直平面内.当甲球从静止落到B点与乙球作弹性碰撞,并使乙球沿弧BDC滑动,求D点(?=60?)处乙球对轨道的压力.
练习六 刚体的定轴转动
一.选择题
1. 以下运动形态不是平动的是 (A) 火车在平直的斜坡上运动; (B) 火车在拐弯时的运动; (C) 活塞在气缸内的运动; (D) 空中缆车的运动. 2. 以下说法正确的是
(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.
3. 有A、B两个半径相同,质量相同的细圆环.A环的质量均匀分布,B环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为IA和I B,则有
(A) IA>IB. (B) IA<IB.
(C) 无法确定哪个大.
(D) IA=IB.
4. 质量为m, 内外半径分别为R1、R2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为dr以中心轴为轴的细圆环微元,如图6.1所示.宽圆环的质量面密度为? = m/S =m/[? (R22-R12)],细圆环的面积为dS =2?rdr,得出微元质量dm = ?dS = 2mrdr/( R22-R12),接着要进行的计算是,
40 / 111