图像分割方法综述 下载本文

图像分割方法综述

摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,

本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。

关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法

Abstract: Image segmentation is a classic problem in computer vision,and become a hot topic

in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation.

Key words: image segmentation; regional growing; active contour; clustering analysis

genetic algorithm

1 引言

图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方法、基于人工智能的图像分割方法三个由低到高的阶段对图像分割进行全面的论述。

2 传统的图像分割方法

2.1 基于阀值的图像分割方法

阀值分割法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。阀值分割法的基本原理是通过设定不同的特征阀值,把图像像素点分为具有不同灰度级的目标区域和背景区域的若干类。它特别适用于目标和背景占据不同灰度级范围的图,目前在图像处理领域被广泛应用,其中阀值的选取是图像阀值分割中的关键技术。

灰度阀值分割方法是一种最常用的并行区域技术,是图像分割中应用数量最多的一类。图像若只用目标和背景两大类,那么只需要选取一个阀值,此分割方法称为单阀值分割。单阀值分割实际上是输入图像f到输出图像g的如下变换:

在上述表达式中,T为阀值,对于目标物体的图像元素g(i,j)=1,对于背景的图像元素g(i,j)=0。但是如果图像中有多个目标需要提取,单一的阀值分割就会出错。就需要选取多个阀值将每个目标分割开,这种分割方法称为多阀值分割。

阀值分割的结果取决于阀值的选择。由此可见,阀值分割算法的关键是确定阀值。阀值确定后,将阀值与像素点的灰度值比较以及对各像素的分割并行地进行。常用的阀值选择方法有利用图像灰度直方图的峰谷法、最小误差法、基于过渡区法、利用像素点空间位置信息的变化阀值法、结合连通信息的阀值方法、最大相关性原则选择阀值和最大熵原则自动阀值法。

图1是利用单阀值方法和局部阀值方法对细胞图像分隔的结果,结果表明,在很多情况下,目标物体和背景的对比度在图像的不同位置并不是一样的,这是如果用一个统一的单阀值将目标与背景分开,效果是不理想的。如果根据图像的局部特征分别用不同的阀值对图像进行分割,即局部阀值分割,则效果要比单阀值分割要好得多。

阀值分割方法的优点是图像分割的速度快,计算简单,效率较高。但是这种方法只考虑像素点灰度值本身的特征,一般不考虑空间特征,因此对噪声比较敏感。虽然目前出现了各种基于阀值分割的改进算法,图像分割的效果有所改进,但在阀值的设置上还是没有很好的解决方法,若将智能遗传算法应用在阀值筛选上,选取能最优分割图像的阀值,这可能是基于阀值分割的图像分割法的发展趋势。 2.2 基于区域的图像分割方法

基于区域的分割方法是以直接寻找区域为基础的分割技术,具体算法有区域生长和区域分离与合并算法。基于区域提取方法有两种基本形式:一种是区域生长,从单个像素出发,逐步合并以形成所需要的分割区域;另一种是从全局出发,逐步切割至所需的分割区域。 2.2.1 区域生长

区域生长是串行区域技术,其分割过程后续步骤的处理要根据前面步骤的结果进行判断而确定。常见的区域生长算法包括:同伦的区域生长方式、对称区域生长方式和模糊连接度方法与区域生长相结合等算法。

区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具体是先对每个需要分割的区域找一个种子像素点作为生长的起点,然后将种子像素周围领域中与种子像素有相同或相似性质的像素合并到种子像素所在的区域中。将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。这样一个区域就长成了。

区域生长的优点是计算简单,对于较均匀的连通目标有较好的分割效果。它的缺点是需要人为的选取种子,对噪声较敏感,可能会导致区域内有空洞。另外它是一种串行算法,当目标较大时分割速度较慢,因此在算法设计时应尽量提高运行效率。 2.2.2 区域分裂合并

区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标的提取。而分裂合并可以说是区域生长的逆过程。它是从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,得到前景目标,继而实现目标的提取。分裂合并的假设是对于一幅图像,前景区域是由一些相互连通的像素组成的,因此如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素。当所有像素点或者子区域完成判断以后,把前景区域或者像素合并就可以得到前景目标。

四叉树分解法就是一种典型的区域分裂合并法。对Lena图的分割效果如图2所示。设R代表整个正方形图像区域,P代表逻辑谓词。基本分裂合并算法步骤如下:

(1)对于任一区域,如果H(Ri)=FALSE就将其分裂成不重叠的四等分; (2)对相邻的两个区域Ri和Rj,它们也可以大小不同(即不在同一层),如果条件H(RiURj)=TURE满足,就将它们合并起来;

(3)如果进一步的分裂或合并都不可能,则结束。 分裂合并法的关键是分裂合并准则的设计。这种方法对复杂图像的分割效果较好,但算法较复杂,计算量大,分裂还可能破坏区域的边界。

在实际应用中,通常是将区域生长算法和区域分裂合并算法这两种基本形式结合使用。该类算法对某些复杂物体定义的复杂场景的分割或者对某些自然景物的分割等类似先验知识不足的图像分割,效果较为理想。 2.3 基于边缘检测的图像分割方法

基于边缘检测的分割方法试图通过检测包含不同区域的边缘来解决分割问题,它可以说是人们研究的最多的方法之一。通常不同的区域之间的边缘上像素灰度值的变化往往比较剧烈,这是边缘检测方法得以实现的主要假设之一。边缘检测方法一般利用图像一阶导数的极大值或二阶导数的过零点信息来提供判断边缘点的基本依据。

边缘检测技术通常可以按照处理的技术分为串行边缘检测和并行边缘检测。串行边缘检测是要想确定当前像素点是否属于检测边缘上的一点,取决于先前像素的验证结果。并行边缘检测是一个像素点是否属于检测边缘上的一点取决于当前正在检测的像素点以及与该像素点的一些相邻像素点。

最简单的边缘检测方法是并行微分算子法,它利用相邻区域的像素值不连续的性质,采用一阶或二阶导数来检测边缘点。近年来还提出了基于曲面拟合的方法、基于边界曲线拟合的方法、基于反应-扩散方程的方法、串行边界查找、基于变形模型的方法。

常用的一阶导数算子有梯度算子、Prewitt算子和Sobel算子。二阶导数算子有Laplacian算子、Kirsch算子和Wallis算子。

图3是分别用Sobel、LoG和Canny算子对Lena图做的边缘检测。有图3可以看出,Canny