2019最新出品
=×6×2=
﹣×3×﹣(﹣×3)
2
﹣π.
故选A.
【点评】本题考查扇形面积公式、直角三角形30度角性质、等边三角形性质等知识,解题的关键是学会分割法求面积,属于中考常考题型.
14.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论: ①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥ D.①③④⑤ 【分析】①由直径所对圆周角是直角,
②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,
③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC; ④用半径垂直于不是直径的弦,必平分弦; ⑤用三角形的中位线得到结论;
⑥得不到△CEF和△BED中对应相等的边,所以不一定全等. 【解答】解:①、∵AB是⊙O的直径, ∴∠ADB=90°, ∴AD⊥BD,
②、∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角, ∴∠AOC≠∠AEC, ③、∵OC∥BD,
2019最新出品
2019最新出品
∴∠OCB=∠DBC, ∵OC=OB, ∴∠OCB=∠OBC, ∴∠OBC=∠DBC, ∴BC平分∠ABD, ④、∵AB是⊙O的直径, ∴∠ADB=90°, ∴AD⊥BD, ∵OC∥BD, ∴∠AFO=90°, ∵点O为圆心, ∴AF=DF,
⑤、由④有,AF=DF, ∵点O为AB中点, ∴OF是△ABD的中位线, ∴BD=2OF,
⑥∵△CEF和△BED中,没有相等的边, ∴△CEF与△BED不全等, 故选D
【点评】此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.
15.一个盒子中装有四张完全相同的卡片,分别写着2cm,3cm,4cm和5cm,盒子外有两张卡片,分别写着3cm和5cm,现随机从盒中取出一张卡片,与盒子外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,那么这三条线段能构成三角形的概率是( ) A.
B.
C.
D.
【分析】先写出四种等可能的结果数,再根据三角形三边的关系判定三条线段能构成三角形的结果数,然后根据概率公式计算即可.
【解答】解:共有四种等可能的结果数,它们为2、3、5,3、3、5,4、3、5,5、3、5, 其中这三条线段能构成三角形的结果数为3,
2019最新出品
2019最新出品
所以这三条线段能构成三角形的概率=. 故选D.
【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了三角形三边的关系.
16.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上, 轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是( )海里.
A.25 B.25 C.50 D.25
【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答. 【解答】解:根据题意, ∠1=∠2=30°, ∵∠ACD=60°, ∴∠ACB=30°+60°=90°, ∴∠CBA=75°﹣30°=45°, ∴△ABC为等腰直角三角形, ∵BC=50×0.5=25, ∴AC=BC=25(海里). 故选D.
【点评】本题考查了等腰直角三角形和方位角,根据方位角求出三角形各角的度数是解题的关键.
2019最新出品
2019最新出品
17.如图,在?ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为( )
A. B.4 C.2 D.
【分析】先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.
【解答】解:∵∠ABC的平分线交CD于点F, ∴∠ABE=∠CBE,
∵四边形ABCD是平行四边形, ∴DC∥AB,
∴∠CBE=∠CFB=∠ABE=∠E, ∴CF=BC=AD=8,AE=AB=12, ∵AD=8, ∴DE=4, ∵DC∥AB, ∴∴∴EB=6,
∵CF=CB,CG⊥BF, ∴BG=BF=2,
在Rt△BCG中,BC=8,BG=2, 根据勾股定理得,CG=故选:C.
【点评】此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形
2019最新出品
, ,
==2,