第十四讲
数学思想之二
教学目标
本讲主要学习从对应法、特殊情况考虑、从简单情况考虑、从反面情况考虑、从整体情况考虑,矩形图法这五大数学方法.通过学习让学生掌握应用这六种方法解决实际问题的能力.培养学生的数学意识,总结年级的各类专题,将专题学习上升到思想学习
知识点拨
数学是一座智慧的城堡,探索则是打开城堡大门的钥匙。在这神秘的世界里有许多的难题,应用题便是其中有趣的一族。这节课向你介绍一些巧妙解应用题的好方法-----数学思想解题。它们不但能让你的思维变得灵活,而且还能提高你的正确率
本讲安排的内容,不仅蕴涵了丰富的思想与方法,而且充分展示了数学的神奇智慧和艺术魅力,以期激发学生的数学兴趣和探索知识的欲望.这些内容,既巩固课堂知识,又给学生的数学能力提供了-个发展空间,在不知不觉中将学生引进奥妙无穷的数学世界之中.
例题精讲
解题时找准数量之间的对应关系,就能实现由未知向已知的转化.这种运用对应关系解题的方法就是对应法.如总数与总份数的对应;路程与时间的对应等.
模块一、对应法
1
例题1
30辆小车和3辆卡车一次运货75吨,45辆小车和6辆卡车一次运货120吨.每辆卡车和每辆小车每次各运货多少吨?
2
例题2
从1985到4891的整数中,十位数字与个位数字相同的数共有多少个?
3
例题3
100个连续自然数的和是8450取其中第1个,第3个,第5个,…,第99个(所有第奇数个),再把这50个数相加,和是多少?
【巩固】 计算:(2+4+6+8+…+1000)-(1+3+5+7+…+999)
4
例题4
将自然数1,2,3,…,100依次无间隔地写成一个多位数:1234567891011…9899100求这个多位数的所有数码之和.
5
例题5
鸡、兔共有脚44只,若将鸡、兔互换,则共有脚52只,问鸡、兔各有多少只?
6
例题6
(07年“走进美妙数学花园”试题)在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格 的长方形共有多少个?
7
例题7
(06年华杯赛试题)如图所示,一只用黑白两色皮子缝制成的足球,其中黑色皮子有12块,问白色皮子有多少块?
模块二、从特殊情况入手
对于一个一般性的问题,如果觉得难以入手,那么我们可以先考虑它的某些特殊情况,从