∴∠MD'N=90°,且∠E'D'F'=90°
∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F' ∴△D'NE'≌△D'MF'(AAS) ∴D'N=D'M,且D'N⊥AC,D'M⊥CM ∴CD'平分∠ACM
即点E沿AC方向下滑时,点D'在射线CD上移动, ∴当E'D'⊥AC时,DD'值最大,最大值=
ED﹣CD=(12﹣6)cm
)=(24﹣12
)cm
∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6如图,连接BD',AD',
∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C
∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24当E'D'⊥AC时,S△AD'B有最大值, ∴S△AD'B最大值=24故答案为:(24﹣12
+(12﹣4),(24
+36
)×6﹣12
=(24)
+36
﹣12
)cm.
2
+(12﹣4)×D'N
【点评】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定点D的运动轨迹是本题的关键.
三.解答题
1. (2019?广东?7分)如题25-1图,在平面直角坐标系中,抛物线y=
323373x?x - 与x轴交于848点A.B(点A在点B右侧),点D为抛物线的顶点.点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE. (1)求点A.B.D的坐标;
(2)求证:四边形BFCE是平行四边形;
(3)如题25-2图,过顶点D作DD1⊥x 轴于点D1,点P是抛物线上一动点,过点P作PM⊥ x轴,
点M为垂足,使得△PAM与△DD1A相似(不含全等). ①求出一个满足以上条件的点P的横坐标; ②直接回答这样的点P共有几个? ....
【答案】
(1)解:由y=
3233733?x?3?-23得点D坐标为(﹣3,23) x?x - =
8488令y=0得x1=﹣7,x2=1
∴点A坐标为(﹣7,0),点B坐标为(1,0) (2)证明:
过点D作DG⊥y轴交于点G,设点C坐标为(0,m) ∴∠DGC=∠FOC=90°,∠DCG=∠FCO ∴△DGC∽△FOC ∴
DGCG ?FOCO由题意得CA=CF,CD=CE,∠DCA=∠ECF,OA=1,DG=3,CG=m+23 ∵CO⊥FA ∴FO=OA=1
∴
3m?23?,解得m=3 (或先设直线CD的函数解析式为y=kx+b,用D.F两点坐标求出1my=3x+3,再求出点C的坐标)
∴点C坐标为(0,3) ∴CD=CE=3?2?3?23?2=6
∵tan∠CFO=
CO=3 FO∴∠CFO=60° ∴△FCA是等边三角形 ∴∠CFO=∠ECF ∴EC∥BA
∵BF=BO-FO=6 ∴CE=BF
∴四边形BFCE是平行四边形
(3)解:①设点P坐标为(m,
323373m?m-),且点P不与点A.B.D重合.若△PAM与△848DD1A相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD1=4,DD1=23
(A)当P在点A右侧时,m>1
(a)当△PAM∽△DAD1,则∠PAM=∠DAD1,此时P、A.D三点共线,这种情况不存在 (b)当△PAM∽△ADD1,则∠PAM=∠ADD1,此时
PMAD1? AMDD1323373m?m-48?4,解得m1=-5(舍去)∴8,m2=1(舍去),这种不存在
m-1323(B)当P在线段AB之间时,﹣7<m<1
(a)当△PAM∽△DAD1,则∠PAM=∠DAD1,此时P与D重合,这种情况不存在 (b)当△PAM∽△ADD1,则∠PAM=∠ADD1,此时
PMAD1? AMDD1323373m?m-48?4,解得m1=-5,m2=1(舍去) ∴8m-1323(C)当P在点B左侧时,m<﹣7
(a)当△PAM∽△DAD1,则∠PAM=∠DAD1,此时
PMDD1? AMAD1323373m?m-48?243,解得m1=﹣11,m2=1(舍去) ∴﹣8m-1243(b)当△PAM∽△ADD1,则∠PAM=∠ADD1,此时
PMAD1? AMDD1