生物化学习题集(附答案) - 图文 下载本文

答:(1)糖酵解指无氧条件下葡萄糖或糖原分解为乳酸过程.

(2)糖酵解与糖异生的差别在于糖酵解的三个关键酶被糖异生的四个关键酶代替催化反应,作用部位:糖异生在胞液和线粒体,糖酵解则全部在胞液中进行.

17、计算1摩尔16碳原子的饱和脂肪酸完全氧化为H2O和C02时可产生多少摩尔ATP?

答:1摩尔16C原子饱和脂肪酶可经七次β-氧化生成8摩尔乙酰CoA,每一次β-氧化可生成1个FADH2和1个NADH+H+,每一摩尔乙酰CoA进入TCA可生成10molATP,因此共产生ATPmol数为: 10×8+4×7=108;除去脂肪酸活化消耗的2molATP则净生成为106mol

18、在磷酸戊糖途径中生成的NADPH,如果不去参加合成代谢,那么它将如何进一步氧化?

答:磷酸戊糖途径是在胞液中进行的,生成的NADPH具有许多重要的生理功能,其中最重要的是作为合成代谢的供氢体,如果不去参加合成代谢,那么它将参加线粒体的呼吸链进行氧化,最终与氧结合生成水,但是线粒体内膜不允许NADPH和NADH通过,胞液中NADPH所携带的氢是通过下面过程进行线粒体的:

① NADPH+ NAD+ NADP+ + NADH

② NADH所携带的氢通过两种穿梭作用进入线粒体进行氧化

α-磷酸甘油穿梭作用;进入线粒体后生成FADH2;苹果酸穿梭作用;进入线粒体后生成NADH

20、一分子丙酮酸最终被氧化成CO2、H2O时可生成多少分子ATP?(列出能量生成过程) 答:假设NADH的P/O以2.5计 过程 底物水平磷酸化 氧化磷酸化 2.5 丙酮酸→乙酰辅酶A 2.5 异柠檬酸→草酰琥珀酸 2.5 α-酮戊二酸→琥珀酰辅酶A 1 琥珀酰辅酶A→琥珀酸 1.5 琥珀酸→延胡索酸 2.5 草果酸→草酰乙酸 12.5 合 计

21、什么叫遗传密码?遗传密码的什么特点?

答:遗传密码是指mRNA中的核苷酸排列顺序与蛋白质中的氨基酸排列顺序的关系,遗传密码的特点有:①简单性和变偶性;②密码无逗号 ;③ 密码不重叠 ;④密码的统一性。

22、三种主要类型的RNA,在蛋白质生物合成中各起什么作用?

答:三种主要类型的RNA是:mRNA、tRNA、rRNA。在蛋白质生物合成中所起的作用分别是: ①mRNA是蛋白质生物合成的模板;

②tRNA 在蛋白质合成中过程中作为氨基酸的载体,起转移氨基酸的作用; ③rRNA参与构成核糖体,而核糖体是蛋白质合成的场所。

23、蛋白质生物合成发生在细胞内的何部位?蛋白质合成的过程大致分为哪些阶段?

答:蛋白质生物合成发生在细胞内的核糖体上。合成过程分为五个阶段:①氨基酸的激活;②肽链合成的起动;③肽链的延长;④肽链合成的终止和释放;⑤肽链的折叠和加工处理。

24、基因对酶合成的调节中,调节基因、起动基因和操纵基因各起什么作用?

答:按操纵子学说,调节基因的作用是负责指导阻遏蛋白的合成。起动基因是RNA聚合酶的结合位点, 而操纵基因是阻遏蛋白或阻遏蛋白与共抑物的复合体的结合部位。当操纵子基因与其结合时,便关闭,如未结合时,操纵基因便“开”了。

25、简述化学修饰调节的特点。

答:①被修饰的酶有两种形式存在,两都之间的转化由不同酶来分别催化。 ②引起酶分子共价键的变化。 ③磷酸化时,消耗能量。

④有级联放大效应,因此调节效率高。

26、图示蛋白质肽类激素的作用原理。 答:

27、图示类固醇激素的作用原理。 答:类固醇激素的作用机制如下图:

28、图示基因对酶合成调节中的“诱导”情况。 答:以乳糖操纵子为例:

六、综合题

1、物质代谢是相互联系的。结合糖代谢和代谢的知识,讨论糖在体内转变为脂肪的大体反应途径,以及各主要反应阶段发生在细胞内何部位。

答: 葡萄糖 → G-6-P → F-6-P → FDP 胞浆

G-3-P DHAP ↓ 丙酮酸

乙酰CoA α-磷酸甘油 从头合成 → 脂肪 (线粒体) 长链脂酰CoA →→→→→ 长链脂酰CoA

2、物质代谢是相互联系的。结合糖代谢和代谢的知识,讨论脂肪转变为糖的大致反应途径。请以油料作物种子发芽时的物质转化为例加以说明。(提示:讨论时至少应涉及脂肪的分解代谢、乙醛酸循环、TCA循环中的部分反应以及糖异生作用等)。 水解 脂肪 脂肪酸 + 甘油 脂肪体 甘油 脂肪酸 脂酰CoA 乙酰CoA 柠檬酸 乙醛酸循环体 OAA 异柠檬酸 乙酰CoA 苹果酸 乙醛酸 琥珀酸 α-磷酸甘油

乙酰CoA

OAA 柠檬酸 异柠檬酸 α-KG

苹果酸 延胡索酸 琥珀酸

线粒体

苹果酸

OAA

PEP 胞 浆

DHAP G-3-P

FDP→G-6-P → G-1-P → UDPG → 糖

3、有人给肥胖者提出下列减肥方案,该方案包括两点:①严格限制饮食中脂肪的摄入,脂肪的摄入量是越少越好;②不必限制饮食中蛋白质和糖的量。试用所学生物化学知识分析,该方案是否可

行,并写下你的推理过程。(不必考虑病理状态和遗传因素) 答:此方案不可行。这是因为:

①严格限制饮食中脂肪的摄入是对的,脂肪的摄入但并非越少越好,人体需要的必需脂肪酸必须靠食物中的脂肪提供。许多脂溶性维生素也溶解在油脂中, 食用一定量的脂肪也有助于脂溶性维生素的吸收。

②物质代放谢是相互联系的,通过限制脂肪的摄入,而不限制饮食中的蛋白质和糖的量,是永远达不到目的,减肥,意欲减少体内脂肪,如果不限制蛋白质和糖的摄入,糖和脂肪在体内很容易转变为脂肪,不但不能减肥,可能还会增加体重。

③减肥应通过脂肪动员来实现,而脂肪动员的条件是供能不足,只有在食物总热量低于人体所需的总热量时才能进行脂肪动员。限制饮食总热量时得提供足够的蛋白质,以保持体内的氮平衡。热量低于人体所需的总热量时才能进行脂肪动员。限制饮食总热量时得提供足够的蛋白质,以保持体内的氮平衡。

4、一位农家小女孩,尽管有着正常的平衡膳食,但也患有偶然的轻度酮症。你作为一名学过生化的学生,当发现她的奇数脂肪酸的代谢不及偶数脂肪酸的代谢好,并得知她每天早上偷偷地摸到鸡舍去拿生鸡蛋吃,你打算下结论说,她患有某种先天性的糖代谢的酶缺陷?试就她的病症提出另一种合理的解释。

答: 该女孩并未患某种先天性的糖代谢的酶缺陷。这是因为:①如果患有某种先天性的糖代谢缺陷。那么小孩在正常平衡膳食时不会是偶然的轻度酮症;②该小女孩常去拿生鸡蛋吃,因为生鸡蛋清中有一种抗生物素蛋白,它与生物素结合后影响了生物素的吸收,导致她出现生物素的缺乏,而生物素是所有需ATP 的羧化酶催化的反应所必需。下列酶的活性受到影响:

①丙酮酸羧化酶活力下降,此酶是糖生成TCA 循环中间物所必需的,该酶活力下降时乙酰CoA进入三羧酸循环的速率下降, 肝脏中酮体生成加速,出现轻度酮症是不难解释的。

②乙酰CoA羧化酶活性下降,此酶活力下降时, 体内脂肪酸的从头合成受阻,乙酰CoA的去路之一不畅,乙酰CoaA的含量升高,结果同样是引起酮症。