MATLAB电路实验报告 下载本文

10.50-0.5-10123456789100.20.10-0.1-0.2012345678910

R=2

10.50-0.5-10123456789100.10.050-0.05-0.1-0.15012345678910

R=3

10.50-0.50123456789100.050-0.05-0.1-0.15012345678910

26

R=5

10.50-0.50123456789100.050-0.05-0.1-0.15012345678910

R=8

10.50-0.50123456789100.10.050-0.05-0.1012345678910

R=10

10.80.60.40.2001234567891010.80.60.40.20012345678910

27

实验六 频率响应

一、实验目的

1、学习有关频率响应的相关概念 2、学习matlab的频率计算

二、实验示例

1、一阶低通电路的频率响应 如图6-1所示(书本37页),若以ùc为响应,求频率响应函数,并画出其幅频响应和相频响应。

使用matlab命令为: clear,format compact ww=0:0.2:4; H=1./(1+j*ww); figure(1)

subplot(2,1,1),plot(ww,abs(H)), grid,xlabel('ww'),ylabel('angle(H)'); subplot(2,1,2),plot(ww,angle(H)), grid,xlabel('ww'),ylabel('angle(H)'); figure(2)

subplot(2,1,1),semilogx(ww,20*log10(abs(H))), grid,xlabel('ww'),ylabel('???à?');

subplot(2,1,2),semilogx(ww,angle(H)), grid,xlabel('ww'); ylabel('angle(H)') 输出结果: A 线性频率

10.8angle(H)0.60.40.200.511.52ww2.533.540angle(H)-0.5-1-1.500.511.52ww2.533.54

B对数频率特性

0-5-10-1510ww0-0.5-1-1.50angle(H)

??±?28 10ww0

2、频率响应:二阶低通电路

由书本上二阶低通的典型函数以及后面的推论。 使用matlab命令为: clear,format compact

for Q=[1/3,1/2,1/sqrt(2),1,2,5] ww=logspace(-1,1,50);

H=1./(1+j*ww/Q+(j*ww).^2); figure(1)

subplot(2,1,1),plot(ww,abs(H)),hold on subplot(2,1,2),plot(ww,angle(H)),hold on figure(2)

subplot(2,1,1),semilogx(ww,20*log10(abs(H))),hold on subplot(2,1,2),semilogx(ww,angle(H)),hold on end

figure(1),subplot(2,1,1),grid,xlable('w'),ylable('abs(H)') subplot(2,1,2),grid,xlable('w'),ylable('angle(H))')

figure(2),subplot(2,1,1),grid,xlable('w'),ylable('abs(H)') subplot(2,1,2),grid,xlable('w'),ylable('angle(H))') 输出结果:

5432100123456789100-1-2-3-4012345678910

29

200-20-40-60-1100-1-2-3-4-110100101100101

3、频率响应:二阶带通电路

图6-5(书本40页)是互耦的串联和并联的谐振电路,根据其频率响应函数和推论,使用matlab命令为: clear,format compact H0=1;wn=1;

for Q=[5,10,20,50,100] w=logspace(-1,1,50);

H=H0./(1+j*Q*(w./wn-wn./w)); figure(1)

subplot(2,1,1),plot(w,abs(H)),grid,hold on subplot(2,1,2),plot(w,angle(H)),grid,hold on figure(2)

subplot(2,1,1),semilogx(w,20*log10(abs(H))),grid,hold on subplot(2,1,2),semilogx(w,angle(H)),grid,hold on end

输出结果:

A 线性频率特性

10.80.60.40.20012345678910210-1-2012345678910

B 对数频率特性

30