人教版高中数学选修2-3全部教案 下载本文

人教版 选修2-3

第一章

计数原理

1.1 分类加法计数原理与分部乘法计数原理

探究与发现 子集的个数有多少

1.2 排列与组合

探究与发现 组合数的两个性质

1.3 二项式定理

小结

第二章 随机变量及其分布

2.1 离散型随机变量及其分布列 2.2 二项分布及其应用

阅读与思考 这样的买彩票方式可行吗?

探究与发现 服从二项分布的随机变量取何值时概率最大

2.3 离散型随机变量的均值与方差 2.4 正态分布

信息技术应用 μ,б对正态分布的影响

小结

第三章 统计案例

3.1 回归分析的基本思想及其初步应用 3.2 独立性检验的基本思想及其初步应用

实习作业

小结

第一章 计数原理

1.1分类加法计数原理和分步乘法计数原理

第一课时

1 分类加法计数原理 (1)提出问题

问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?

问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法? (2)发现新知

在第2类方案中有n种不同的方法. 那么完成这件事共有

分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,

N?m?n种不同的方法. (3)知识应用

例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:

A大学 B大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学

如果这名同学只能选一个专业,那么他共有多少种选择呢?

分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有 5+4=9(种).

变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?

探究:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?

如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?

一般归纳:

完成一件事情,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有

N?m1?m2?????mn种不同的方法. 理解分类加法计数原理:

分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互

1

独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事. 例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?

解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,

第一类, m1 = 1×2 = 2 条 第二类, m2 = 1×2 = 2 条

第三类, m3 = 1×2 = 2 条

所以, 根据加法原理, 从顶点A到顶点C1最近路线共有 N = 2 + 2 + 2 = 6 (条)

第二课时

2 分步乘法计数原理 (1)提出问题

问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?

用列举法可以列出所有可能的号码:

我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码. (2)发现新知

在第2类方案中有n种不同的方法. 那么完成这件事共有 N?m?n 种不同的方法. (3)知识应用

例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?

分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生. 解:第 1 步,从 30 名男生中选出1人,有30种不同选择;

第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.

一般归纳:

完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有mn种不同的方法.那么完成这件事共有N?m1?m2?????mn种不同的方法.

理解分步乘法计数原理:

分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事. 3.理解分类加法计数原理与分步乘法计数原理异同点

2

分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,