基于MATLAB的BP神经网络应用
1.4 神经网络的应用
神经网络理论的应用取得了令人瞩目的发展,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别、CAD/CAM等方面都有重大的应用实例。下面列出一些主要应用领域:
(1)模式识别和图像处理。印刷体和手写字符识别、语音识别、签字识别、指纹识别、人体病理分析、目标检测与识别、图像压缩和图像复制等。
(2)控制和优化。化工过程控制、机器人运动控制、家电控制、半导体生产中掺杂控制、石油精炼优化控制和超大规模集成电路布线设计等。
(3)预报和智能信息管理。股票市场预测、地震预报、有价证券管理、借贷风险分析、IC卡管理和交通管理。
(4)通信。自适应均衡、回波抵消、路由选择和ATM网络中的呼叫接纳识别和控制。 (5)空间科学。空间交汇对接控制、导航信息智能管理、飞行器制导和飞行程序优化管理等。
[4]
2 神经网络结构及BP神经网络
2.1 神经元与网络结构
人工神经网络(artificial neural network,ANN)是模仿生物神经网络功能的一种经验模型。生物神经元受到传入的刺激,其反应又从输出端传到相联的其它神经元,输入和输出之间的变换关系一般是非线性的。神经网络是由若干简单(通常是自适应的)元件及其层次组织,以大规模并行连接方式构造而成的网络,按照生物神经网络类似的方式处理输入的信息。模仿生物神经网络而建立的人工神经网络,对输入信号有功能强大的反应和处理能力。
神经网络是由大量的处理单元(神经元)互相连接而成的网络。为了模拟大脑的基本特性,在神经科学研究的基础上,提出了神经网络的模型。但是,实际上神经网络并没有完全反映大脑的功能,只是对生物神经网络进行了某种抽象、简化和模拟。神经网络的信息处理通过神经元的互相作用来实现,知识与信息的存储表现为网络元件互相分布式的物理联系。神经网络的学习和识别取决于各种神经元连接权系数的动态演化过程。
若干神经元连接成网络,其中的一个神经元可以接受多个输入信号,按照一定的规则转换为输出信号。由于神经网络中神经元间复杂的连接关系和各神经元传递信号的非线性方式,输入和输出信号间可以构建出各种各样的关系,因此可以用来作为黑箱模型,表达那些用机理模型还无法精确描述、但输入和输出之间确实有客观的、确定性的或模糊性的规律。因此,人工神经网络作为经验模型的一种,在化工生产、研究和开发中得到了越来越多的用途。
2.1.1 生物神经元
4
[8]
[9]
基于MATLAB的BP神经网络应用
人脑大约由1012个神经元组成,神经元互相连接成神经网络。神经元是大脑处理信息的基本单元,以细胞体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞,其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触(Synapse,又称神经键)组成。 如图2.1所示。
图2.1 生物神经元
从神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近。当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质。
2.1.2 人工神经元
归纳一下生物神经元传递信息的过程:生物神经元是一个多输入、单输出单元。常用的人工神经元模型可用图2.2模拟。
图2.2 人工神经元(感知器)示意图
当神经元j有多个输入xi(i=1,2,…,m)和单个输出yj时,输入和输出的关系可表示为: m??sj??wijxi??j ?i?1 ?yj?f(sj)? (2.3) 其中j为阈值,wij为从神经元i到神经元j的连接权重因子,f( )为传递函数,或称激励函数。
5
基于MATLAB的BP神经网络应用
2.1.3人工神经网络的构成
神经元的模型确定之后,一个神经网络的特性及能力主要取决于网络的拓扑结构及学习方法。 神经网络连接的几种基本形式[17]: 1)前向网络
前向网络结构如图2.4所示,网络中的神经元是分层排列的,每个神经元只与前一层的神经元相连接。神经元分层排列,分别组成输入层、中间层(也称为隐含层,可以由若干层组成)和输出层。每一层的神经元只接受来自前一层神经元的输入,后面的层对前面的层没有信号反馈。输入模式经过各层次的顺序传播,最后在输出层上得到输出。感知器网络和BP网络均属于前向网络。
图2.4 前向网络结构
2)从输出到输入有反馈的前向网络
其结构如图2.5所示,输出层对输入层有信息反馈,这种网络可用于存储某种模式序列,如神经认知机和回归BP网络都属于这种类型。
图2.5有反馈的前向网络结构
3) 层内互连前向网络
其结构如图2.6所示,通过层内神经元的相互结合,可以实现同一层神经元之间的横向抑制或兴奋机制。这样可以限制每层内可以同时动作的神经元素,或者把每层内的神经元分为若干组,让每一组作为一个整体进行运作。例如,可利用横向抑制机理把某层内的具有最大输出的神经元挑选出来,从而抑制其他神经元,使之处于无输出状态。
6
基于MATLAB的BP神经网络应用
图2.6有相互结合的前向网络结构
4) 相互结合型网络
相互结合型网络结构如图2.7所示,这种网络在任意两个神经元之间都可能有连接。Hopfield 网络和Boltzmann 机均属于这种类型。在无反馈的前向网络中,信号一旦通过某神经元,该神经元的处理就结束了。而在相互结合网络中,信号要在神经元之间反复传递,网络处于一种不断变化状态的动态之中。信号从某初始状态开始,经过若干次变化,才会达到某种平衡状态。根据网络的结构和神经元的特性,网络的 运行还有可能进入周期振荡或其他如混沌平衡状态。
图2.7结合型网络结构
综上,可知神经网络有分层网络、层内连接的分层网络、反馈连接的分层网络、互连网络等四种结构,其神经网络模型有感知器网络,线性神经网络,BP神经网络,径向基函数网络,反馈神经网络等,本文主要学习研究了BP神经网络,以及BP神经网络在函数逼近和样本含量估计两个实例中的应用分析。
2.2 BP神经网络及其原理
2.2.1 BP神经网络定义
BP (Back Propagation)神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。
7