第2章 轴向拉伸与压缩.doc( 下载本文

第2章 轴向拉伸与压缩

2.1 轴向抗伸与压缩的概念和实例

工程中存在着很多承受拉伸或压缩的杆件。例如,火箭发射架撑臂AB中的活塞杆(图2—1a)、桁架的支杆(图2-1b)等等。

图2-1

虽然这些杆件的形状和加载方式等并不相同,但就杆长的主要部分来看却有着相同的特点:都是直杆,所受外力的合力与杆轴线重合,沿轴线方向发生伸长或缩短变形。这种变形形式称为直杆的轴向拉伸或压缩,简称拉伸或压缩。

图2-2

在材料力学中,把工程中承受拉伸或压缩的杆件均表示为图2-2所示的计算简图。图中用实线表示变形前杆件的外形,用虚线表示变形后杆件的形状。

2.2 横截面上的内力和应力

2.2.1 横截面上的内力

- 17 -

图2-3a所示为一受拉伸的等截面直杆,简称等直杆。用截面法可求得其横截面上的内力。沿横截面mm上相互作用的内力是一个分布力系,其合力为FN(图2-3b、c)。

由左段的平衡方程?X?0,得

FN?F?0 FN?F

图2-3

因为外力F的作用线与杆件轴线重合,内力的合力FN的作用线也必然与杆件的轴线重合,所以FN称为轴力。一般地把拉伸时的轴力规定为正,压缩时的轴力规定为负。

若沿杆件轴线作用的外力多于两个,则在杆件各部分的横截面上,轴力不尽相同。这时通常用轴力图表示轴力沿杆件轴线变化的情况。作图时,沿杆件轴线方向取坐标表示横截面的位置,以垂直于杆轴的另一坐标代表轴力。下面用例题来说明轴力图的绘制。

例2-1 直杆受力如图2-4a所示。作直杆的轴力图。

解 注意到直杆受到多个外力作用,内力将随着横截面位置的不同而发生变化。需将直杆分为三段,分别为AB、BC和CD段来计算内力。具体解法如下。

- 18 -

图2-4

应用截面法,沿1-1截面假想地把直杆截开为两部分,去掉右边部分,保留左边部分,并设截面上的轴力FN1方向为正,即为拉力。保留部分的受力如图2-4b所示。根据平衡方程?X?0

FN1?F?0

故AB段的轴力为

FN1?F

用同样的方法,将杆件从2-2截面截开,保留左段,其受力如图2-4c所示。根据平衡方程?X?0

FN2?2F?F?0

故BC段的轴力为

FN2??F

负号表示该横截面上的轴力的实际方向与所设方向相反,即为压力。

从3-3截面处截开杆件,由于右段外力少,计算简便,故保留右段,受力如图2-4d所示,根据平衡方程?X?0

FN3?2F?0

故CD段轴力为

- 19 -