化学反应动力学第二章习题参考答案 下载本文

化学反应动力学 第二章习题

1、The first-order gas reaction SO2Cl2 ? SO2 + Cl2 has k = 2.20 ? 10-5 s-1 at 593K,

(1) What percent of a sample of SO2Cl2 would be decomposed by heating at 593K for 1 hour?

(2) How long will it take for half the SO2Cl2 to decompose? 解:一级反应动力学方程为:

[SO2Cl2]?[SO2Cl2]??e?k?t ?

(1) 反应达1小时时:

[SO2Cl2]?e?k?t

[SO2Cl2]??5[SO2Cl2]?e?2.20?10?60?60=0.924=92.4%

[SO2Cl2]?已分解的百分数为:100%-92.4%=7.6% (2) 当

[SO2Cl2]111? 时,t??ln?31506.7s

[SO2Cl2]?2k20.693 = 31500 s = 8.75 hour

22.2?10?52、T-butyl bromide is converted into t-butyl alcohol in a solvent containing 90 percent acetone and 10 percent water. The reaction is given by

t1?(CH3)3CBr + H2O ? (CH3)3COH + HBr

The following table gives the data for the concentration of t-utyl bromide versus time:

T(min) 0 9 18 24 40 54 72 105

(CH3)CBr (mol/L) 0.1056 0.0961 0.0856 0.0767 0.0645 0.0536 0.0432 0.0270

(1) What is the order of the reaction?

(2) What is the rate constant of the reaction? (3) What is the half-life of the reaction? 解: (1) 设反应级数为 n,则 ?11d[A]??kt ?k[A]n ?

[A]n?1[A]?n?1dt1[A]? 若 n=1,则 k?ln

t[A]10.105610.1056?0.01047 , t = 18 k?ln?0.01167 t = 9 k?ln90.0961180.085610.105610.1056ln?0.01332, t = 40 k?ln?0.01232 t = 24 k?240.0767400.0645 t = 54 k?0.01256 , t = 72 k?0.01241, t = 105 k?0.01299

1 / 8

111?) 若 n=2,则 k?(t[A][A]? t : 9 18 24 40 54 k : 0.1040 0.1229 0.1487 0.1509 0.1701 若 n=1.5

t : 9 18 24 k : 0.0165 0.0189 0.0222 若 n=3

t : 9 18 24 k : 2.067 2.60 3.46

反应为一级。

(2) k = 0.0123 min -1= 2.05×10-4 s -1

0.693 (3)t1?= 56.3 min = 3378 s

20.01233、已知复杂反应:

A1A2 + A3k-1d[A1]?k1[A1]?k?1[A2][A3],推导其动力学方程。要求写出详细的推 的速率方程为?dt导过程。

k1解:设 t?0 时, [A1]?[A1]? ,[A2]?[A2]? ,[A3]?[A3]?

t?t 时, [A1]?[A1]??x ,[A2]?[A2]??x ,[A3]?[A3]??x 代入 ? 得:

d[A1]?k1[A1]?k?1[A2][A3] dtdx?k1([A1]??x)?k?1([A2]??x)([A3]??x) dt ?k1[A1]??k1x?k?1[A2]?[A3]??k?1[A3]?x?k?1[A2]?x?k?1x2 ?k1[A1]??k?1[A2]?[A3]??(k1?k?1[A3]??k?1[A2]?)x?k?1x2 令 α = k1[A1]??k?1[A2]?[A3]? , β = k1?k?1[A3]??k?1[A2]? , γ = ?k?1

dx????x??x2 , 移项积分: dtxtdx? ??0dt 0???x??x2 则

?x2dx(x??????4???????4??)(x?)2?2?20?t

2 / 8

令 q??2?4?? ,

?xdxq??q??(x?)(x?)2?2?x?0?t

q??2? lnq??x?2?x0?qt

??q??q2?}?{ln}?qt 得动力学方程:{ln??q??qx?2?x?4、已知复杂反应由下列两个基元反应组成:

程。 解:速率方程:

d[A2]?k1[A1]?k2[A1][A2] (1) dtd[A3]?k2[A1][A2] (2) dtA1A2 +A1k1k2A2A3求反应进行过程中,A1物种浓度与A3物种浓度间的关系。要求写出详细的推导过

d[A2]k1?k2[A2](1)?,得: d[A3]k2[A2](2)设 t?0 时,[A2]?[A2]? ,[A3]?0, 移项积分:

[A3]k2[A2]d[A2]??d[A3] ?[A2]ok?k[A]0122[A2]

?[A2][A2]?(k1?1)d[A2]?[A3]

k1?k2[A2] ?k1k?k2[A2]ln1?([A2]?[A2]?)?[A3] k2k1?k2[A2]? 考虑物料平衡: [A2]?[A2]??[A1]??[A1]?2[A3],代入上式, 得[A1]~[A3]关系式为:

k?k2([A2]??[A1]??[A1]?2[A3])k?1ln1?([A2]??[A1]??[A1]?2[A3]?[A2]?)?[A3] k2k1?k2[A2]?3 / 8