(5)
?1?15?u2u13dx令5?4x?u???du??(5?u2)du
34u2815?4xx11?1?1??5u?u3?? 8?3?16(6)
3?1342udu1令1?x?u??1?2?2(1?)du
0u?11?x?12u?1dx01?2(u?lnu?1)(7)
120?1?2ln2 td(?)??e22t2?21?10tet2?2dt???e01t2?2?1?e0?12
(8)
0d(x?1)?dx0 ??arctan(x?1)???2x2?2x?2??2(x?1)2?1?220??(9)
??2?2cosx?cosxdx?2?2cosxsin2xdx
03???2?20cosxsinxdx?2?2cosxdcosx
0?4??(cosx)3(10)
3220?4 31?x?10xedx???xde0?x??(xe)??edx??e00?x11?x?1?e?x10
?1?2?2 e12?(11)
??tsin?tdt????0?02?2??1???tdcos?t???tcos?t0??cos?tdt? 0?????2??2?1?2sin?t0???2?2??2
(12)
?414lnxdx?2?lnxd1xx?2(xlnx)?2?1441xdx x?8ln2?4x?41?8ln2?4
(13)
?20e2x????121?2x2xcosxdx??cosxde??(ecosx)2??2e2xsinxdx?
00202?? 6
???1?12112x12x????1??sinxde????esinx2??2e2xcosxdx
02?202440????2e2xcosxdx?01?(e?2) 5??1?cos2x1?131?2xdx??x??xdsin2x?
22?20?0?3?2(14)
??0(xsinx)dx??2?0121??31???(xsin2x)??2xsin2xdx???xdcos2x
06426400?3?33?1???1??????(xcos2x)0??cos2xdx????sin2x0???0??64?64464?3
(15)
?e1elnx dx???1lnx dx??lnx dx
e1ee111e?(xlnx)1??dx?(xlnx)1??1dx?2?1ee2 e5x3sin2xx3sin2xdx?0 3. 解:(1) ∵4为奇函数 ∴?242?5x?2x?1x?2x?1(2) 利用定积分的线性性质可得
原式??a?axcosxdx??5sinxdx??2dx
?a?aaa而前两个积分的被积函数都是奇数,故这两个定积分值均为0,
原式?4.证:令x??t,则
左边??a?a2dx?2?ldx?4a
?aa??bbf(?t)(?dt)??f(?t)dt??f(?x)dx?右边
?b?bbb5.证:令x?1,则 t左边???1dt1t2(1?2)tla1x??1x111xdt?dx=右边 22?1t?1x?1a?l16.证一:而
?a?laf(x)dx??f(x)dx??lf(x)dx
aa00?a?llf(x)dxx?t?l?a0f(t?l)dt??f(t)dt??f(x)dx
7
??a?laf(x)dx??f(x)dx??f(x)dx??f(x)dx
a00lal所以
?a?laf(x)dx的值与a无关。
证二:令F(a)?所以F(a)?7.证:令F(x)??axa?laf(x)dx,则F?(a)?f(a?l)?f(a)?0,
?0a?lf(x)dx是与a无关的常数。
?f(t)dt,则
xx00F(?x)??所以
?x0f(t)dtt??u?f(?u)(?du)??f(u)du?F(x)
?x0f(t)dt是偶函数。
8.证:?a?a0xf[?(x)]dxa?x?t?(a?t)f[?(a?t)](?dt)
a0??(a?t)f[?(a?t)]dt?a?f[?(a?t)]dt??tf[?(a?t)]dt
000aa?a?f[?(a?x)]dx??xf[?(a?x)]dx
00aa??xf[?(x)]dx??xf[?(a?x)]dx?a?f[?(a?x)]dx
000aaa即
?a0x{f[?(x)]?f[?(a?x)]}dx?a?f[?(a?x)]dx
0a
习 题 5.4
1. 答:不正确.因为
dx?0(1?x)2在[0,2]上存在无穷间断点x?1 , 故
2dx?0(1?x)2不能直接应用Newton?Leibniz公式计算,事实上,
2dx???0(1?x)222dxdx??0(1?x)2?1(1?x)2 11??2?lim????01??021dxdx?lim?lim(1?x)2??0??1??(1?x)2??0?1?x01?lim? ??01?x1???lim?(??01??1)?lim?(?1???01?)???
111limx?3?? 3x???33所以广义积分发散. 2.解:(1)
???11?3dx??xx43????1??8
即广义积分收敛于(2)?1. 3???1dx?2xx??1?2(limx???x?1)???
????1dx发散. x?ax(3)
???0e1?axedx??a????011(lime?ax?1)? x???aa 即广义积分收敛于
1. a(4)
???1dx?xx?1?21dx?xx?1???2dx
xx?11而
?212dxdx?lim??xx?1??01??x1?xx?1?tlim????0?2tdt
t(t2?1)?2lim?(arctant)1????0?2
?????2dx?xx?1x?1?t2?1dt??? ?2(arctant)?122t?1所以
?????1dx??
xx?1(5)
??1111?2dx?[?(x?1)]??
28(x?1)31e?3x??(6)
??01dx?[?e?3x3??]?01 3??11??(7)?dx??d(lnx)?ln(lnx)e???
eexlnxlnx11(8)令x?,则dx??2dt,于是
tt??1dt2??0??dxt?dtt?0?1?x2??1?x??????1?t21?t???0?1?t2??1?t??
??2tt?∴2
??0??????dxdxx?dx???? 2?2?2?001?x1?x1?x1?x1?x1?x???????????9
?从而
???01??? dx?arctgx?021?x2??0???dx。 ?41?x21?x????3.解:(1)
?60(x?4)dx =?(x?4)dx+?(x?4)dx
40?236?234?23=3(x?4)1634?3(x?4)11430?3?32?0?0?33?4?3(32?34)
dx(2) 令arcsinx?t,dt?1?x2x?于是
??20?1arcsinxx?1?x?x0dx?2?2tdt?t20??24
2a???2a4.解:左端?lim?1???e
x???x?a??右端????2xe?d??2x?????2?2xa??a?2xde2?2x2?2x??2??xe???a??a????a2xe?2xdx??
??2a2e?2a?2???a?2xxde?2x?2a2e?2a?2??xe?????ae?2xdx??
? ?2a?2a?1e ∴2a?2a?1e?2??2a
?2??2a?e?2a
解之a?0或a??1。
本章复习题A
1. 解:若x??a,b?时,f(x)?0,则?baf(x)dx在几何上表示由曲线y?f(x),直线
x?a,x?b及x轴所围成平面图形的面积. 若x??a,b?时,f(x)?0,则?bf(x)dx在几何
a上表示由曲线y?f(x),直线x?a,x?b及x轴所围平面图形面积的负值. (1)由下图(1)所示,??1xdx?(?A1)?A1?0.
1y 1 -1 A 1 A 1 y R 1 O - 1 ( 1 )
x A 2 ?R O R ( 2 )
x 10