Ir′ = U s
? + C ′ Rr 2
?
? R ? ? s
N
+ ω 2 (L + C L′ ) 2=220 2
0.5 ? ?
? 0.35 + 1.023 × ?0.04 ? + (100π )2 × (0.006 + 1.023 × 0.007)2? 220 = 172.5939 + 17.0953
= 15.9735(A)
2 ? ?1 s ?
1 ls 1 lr
气隙磁通在定子每相绕组中的感应电动势
? R′ ?2 2 E g = I ′r ? r ? + ω = 15.9735 × 156.25 + 4.8361 ≈ 202.7352 (V) 1 L′lr ? ? sN 额定运行时的励磁电流幅值
Eg202.7352 = I = ≈ 2.482(A) 0 100π × 0.26ω1 Lm
由异步电动机简化电路,额定运行时的定子额定电流幅值
I1 N = ? U s
+ = ′ ? R2=2 220
? 0.5 ? 2 2
+ (100π )× (0.006 + 0.007)? 0.35 + ? ? 0.04 ? 2 2 + ω (L+ L′ )s2?202 ?
= ? Rls ? 16.6 1 s
165 .1225 +7 9 6
= 16.316(4 A)
额定电磁转矩 lr
T = e
或
2 ′ 3 × 3 0.5 Rr Pm 3n p 2
′≈ 91.37(N ? m) (依据 T 形等效电路)= I = × 15.9735× r
ωm ω1 sN 100π 0.04
(3)定子电压和频率均为额定值时,理想空载时的励磁电流
Pm 3np 2 Rr′ 3 × 3 2 0.5= I1 N =× 16.3164 ×T≈ 95.33(N ? m) (依据简化等效电路) e = s
100π 0.04 ω ω N m 1
2R + ω (L + L ) 2
2
I0 =
U s
=
220
0.35
2
s 1 ls m
+ (100π )× (0.006 + 20.26)
0.5
2
= 2.633(A)
(4)定子电压和频率均为额定值时,临界转差率
sm =
2 2 R+ ω L+ L′ Rr′()2
=
0.35
2
s 1 ls lr
+ (100π )× (0.006 + 20.007)
2
= 0.122
临界转矩
Tem =2 ? R 3n U 2
p s
R2
2
(L 2
L )? =
3 × 3 × 2202
200 × π × 0.35 + 0.352 + (100π )2 × (0.006 + 0.007)2 []
+? m)s + ω1 = 15ω51.83(s N异步电动机的机械特性:
ls
+ ′lr
S n 0 n1 S m
1 0
T em Te
5-6 异步电动机参数如习题 5-1 所示,输出频率 f 等于额定频率 fN 时,输出电压 U 等于额定 电压 UN,考虑低频补偿,若频率 f=0,输出电压 U=10%UN。
(1)求出基频以下电压频率特性曲线 U=f(f)的表达式,并画出特性曲线。 (2)当 f=5Hz 和 f=2Hz 时,比较补偿与不补偿的机械特性曲线,两种情况下的临界转矩 Temax。 解:(1)UN=220(A) 斜率
U N ? 0.1U N220 ? 22
= 3.96 , = 50 ? 0 f N ? 0
考虑低频补偿时,电压频率特性曲线 U = 3.96 f + 22 ; k = 不补偿时,电压频率特性曲线
U = (2)当 f=5Hz 时
3n U
2
p s
2
220
f = 4.4 f50
3× 3 × 222
=
A、不补偿时,输出电压U = 4.4 f= 22(V) , 临界转矩
T = em
2 ? R
L )? 20 × π × 0.35 + 0.352 + (10π )2 × (0.006 + 0.007)2
B、补偿时,输出电压U = 3.96 f + 22 = 41.8(V)ω+ ? m)s + ω+ l′r = 78.01 84(s N2 1 ls 3n U 3 × 3 × 41.82 p s
Tem ==
2 ?2 2 20 × π × 0.35 + 0.352 + (10π )2 × (0.006 + 0.007)2 R (L L ) 2 ? R
ω+= 2811.88s3(N ? ms) + ω1 ls +
R
2
2
(L
[]
[]
lr
′当 f=2Hz 时
A、不补偿时,输出电压U = 4.4 f
= 8.8(V) , 临界转矩
3 × 3 × 8.82
T = em
3n U
2
p s
2
=
L )? 8 × π × 0.35 + 0.352 + (4π )2 × (0.006 + 0.007)2
B、补偿时,输出电压U = 3.96 f + 22 = 29.92(V)
ω+ ? m)s + ω1 ls + l′r = 37.61 66(s N2 3n U 3 × 3 × 29.922 p s
Tem ==
2 ?2 2 8 × π × 0.35 + 0.352 + (4π )2 × (0.006 + 0.007)2 R (L L ) 2 ? R
ω1 s + s + ω1 ls + l′r
4电35平.41P9W(N? m) 变器主回路,采用双极性调制时,用“1“表示上桥臂开通,5-8 =两M逆”0“表示
R 2
2
2 ? R
(L
[]
[]
上桥臂关断,共有几种开关状态,写出其开关函数。根据开关状态写出其电压矢量表达式, 画出空间电压矢量图。 解: