数字电路与系统设计课后答案 下载本文

数字电路与系统设计课后答案

【篇一:数字逻辑电路与系统设计习题答案】

.1 将下列二进制数转换为等值的十进制数。 (1) (11011)2

(2) (10010111)2 (4) (11111111)2 (6) (0.0111)2 (3) (1101101)2 (5) (0.1001)2 (7) (11.001)2 题1.1 解:

(8) (101011.11001)2 (1) (11011)2 =(27)10

(2) (10010111)2 =(151)10(4) (11111111)2 =(255)10(6) (0.0111)2 =(0.4375)10 (3) (1101101)2 =(109)10

(5) (0.1001)2 =(0.5625)10 (7) (11.001)2 =(3.125)10

(8) (101011.11001)2 =(43.78125)10

1.3 将下列二进制数转换为等值的十六进制数和八进制数。 (1) (1010111)2

(2) (110111011)2

(4) (101100.110011)2

(3) (10110.011010)2 题1.3 解:

(1) (1010111)2 =(57)16 =(127)8

(2) (110011010)2 =(19a)16 =(632)8 (3) (10110.111010)2 =(16.e8)16 =(26.72)8 (4)

(101100.01100001)2 =(2c.61)16 =(54.302)8 1.5 将下列十进制数表示为8421bcd码。 (1) (43)10 (3) (67.58)10 题1.5 解:

(1) (43)10 =(01000011)8421bcd

(2) (95.12)10 =(10010101.00010010)8421bcd (3) (67.58)10 =(01100111.01011000)8421bcd (4) (932.1)10 =(100100110010.0001)8421bcd

1.7 将下列有符号的十进制数表示成补码形式的有符号二进制数。 (1) +13 (2)?9 (3)+3 (4)?8

(2) (95.12)10 (4) (932.1)10 1

题1.7解:

(1) +13 =(01101)2 (3) +3 =(00011)2 (2)?9 =(10111)2 (4)?8 =(11000)2

1.9 用真值表证明下列各式相等。 (1) (2) (3) (4) ab?b?ab?a?b

a?b?c???ab???ac?

ab?c?a?bc ab?ac?ab?ac 题1.9解: (1)

证明ab?b?ab?a?b (2)

证明a?b?c???ab???ac? (3)

证明ab?c?a?bc 2

(4)

证明ab?ac?ab?ac

1.11 用逻辑代数公式将下列逻辑函数化成最简与或表达式。 (1)f?ab?ac?bc?acd (2)f?a?ac?a?cd?d? (3)

f?bd?d?d?b?c?ad?b (4)f?abc?ad??b?c?d (5)f?ac?bc?b?a?c? (6)f?a?bb?c 题1.11解:

(1)f?ab?ac?bc?acd?a?bc (2)f?a?ac?a?cd?d??a?cd (3)f?bd?d?d?b?c?ad?b?d?ab?bc (4)

f?abc?ad??b?c?d?abc?d (5)f?ac?bc?b?a?c??ac?bc

(6)f?a?bb?c?ab?bc?ac或?ab?bc?ac 1.13 用卡诺图将下列逻辑函数化成最简与或表达式。 3 ?? ? ?? ?

(1)f??a?b?cd?abc?acd且ab?cd?0 (2)f?ac?ab 且a,b,c不能同时为0或同时为1 (3)f?a,b,c?? ?m?3,5,6,7???d?2,4?

?m?0,4,6,8,13???d?1,2,3,9,10,11? ?m?0,1,8,10???d?2,3,4,5,11? ?m?3,5,8,9,10,12???d?0,1,2,13?

(4)f?a,b,c,d??(5)f?a,b,c,d??(6)f?a,b,c,d??题1.13解: (1)f??a?b?cd?abc?acd且ab?cd?0 f?b?d?ac

(2)f?ac?ab 且a,b,c不能同时为0或同时为1 f?b?c

(3)f?a,b,c??

?m?3,5,6,7???d?2,4?

?m?0,4,6,8,13???d?1,2,3,9,10,11? ?m?0,1,8,10???d?2,3,4,5,11? ?m?3,5,8,9,10,12???d?0,1,2,13? f?a?b

(4)f?a,b,c,d?? f?ad?acd?b

(5)f?a,b,c,d??

f?bd?ab 或 f?bd?ac (6)f?a,b,c,d?? f?bd?ab?cd?ac

1.15将下列逻辑函数化简为或非—或非式。 (1)f?abc?bc (2)f??a?c?a?b?ca?b?c (3)f?abc?bcd?abd 4 ?

(4)f(a,b,c,d)?题1.15解: ?m?0,2,3,8,9,10,11,13? (1)f?abc?bc

f?b?c?a?c?b?c 或 f?b?c?b?c?a?b (2)f??a?c?a?b?ca?b?c ?

f?b?c?a?c?a?b?c (3)f?a,b,c,d??

?m?0,1,8,9,10? ?m?0,2,3,8,9,10,11,13? f?b?c?d?a?c (4)f(a,b,c,d)? f?a?c?????d

第2章习题及解答

2.1判断图p2.1所示电路中各三极管的工作状态,并求出基极和集电极的电流及电压。