第七章 向量代数与空间解析几何
习题7.1
3. 设M是平行四边形ABCD的中点, O是任一点, 证明 OA?OB?OC?OD?4OM 解: 由平面几何知识我们知道M既是AC的中点,又是BD的中点.下面先证
OA?OC?2OM.
由三角形法则, 我们有
OM?OA?AM?OA?而AC?OC?OA, 故OM?OA?1AC(因M是AC的中点), 211(OC?OA)?(OC?OA), 22从而得到OA?OC?2OM. 同理可以得到 OB?OD?2OM, 故OA?OB?OC?OD?4OM.
8. 证明以A(4,1,9), B(10,-1,6), C(2,4,3) 为顶点的三角形是等腰直角三角形.
解:由两点间的距离公式得
AB?(10?4)2?(?1?1)2?(6?9)2?7,
2 BC?(2?10)???4?1?2??3?6?2, 27CA?所以
?4?2???1?4???9?3??7.
AB?CA
AB?CA?BC
222222 故 ABC为等腰直角三角形
9. 求点A(1,2,3), B(3,-4,6) 所确定的向量 解:
AB 的坐标, 模, 方向余弦和方向角.
AB?(3?1,?4?2,6?3)?(2,?6,3)
AB?22?(?6)2?32?7,
263cos??,cos???,cos??,
777
1
23?6??arccos,??arccos,??arccos.
777习题7.2
5. 设a=(3,5,?2), b=(2,1,4), 试确定?,?的关系, 使?a??b与z轴垂直. 解 a=(3,5,?2), b=(2,1,4),
?a??b?(3??2?,5???,?2??4?)
取z轴方向向量c=(0,0,1).
要使?a??b与z轴垂直只需(?a??b)而
c?0.
(?a??b)c?(3??2?)?0?(5???)?1?(?2??4?)?1??2??4??0即?
?2?.
9. 设a,b是向量, 证明: 证明: 由向量的性质可得
(a?b)?(a?b)?2(a?b).
(a?b)?(a?b)?(a?a)?(a?b)?(b?a)?(b?b) =-(a?b)?(a?b) =-2(a?b)可得:
(a?b)?(a?b)?2(a?b)
习题7.3
2. 求平面2x?3y?4z?12=0 与三个坐标轴的交点.
解: 因为2x?3y?4z?12=0可化为:
xyz???1 6?4?3所以, 平面与x轴交点坐标为:(6, 0, 0), 平面与Y轴交点坐标为:(0, ?4, 0), 平面与Z轴交点坐标为:(0, 0, ?3).
3. 求过点(1,-1,2) 且平行于平面3x?y+2z+6=0的平面方程. 解: 设所求平面的法向量为n
因为所求平面与平面3x?y+2z+6=0平行, 所以 n=(3, ?1, 2),
2
所以, 据平面的点法式方程,所求的平面的方程为:
3(x?1)?(y+1)+2(z?2)=0. 即 3x?y+2z?8=0.
4. 求过点(1,1,1)且垂直于两平面x?2y+z=0, y?0的平面方程. 解: 平面x?2y+z=0的法向量n1平面y?0的法向量2取n??1,?2,1?
n??0,1,0?
?n1?n2作为所求平面的法向量。
i0j1k0n?n1?n2?1?21???1,0,1?
所以, 所求平面的方程为:?1即:x?z?x?1??0?y?1??1?z?1??0
?0
习题7.4
?2x?4y?z?09. 求直线? 在平面4x?y?z?1上的投影直线方程.
3x?y?2z?9?0??2x?4y?z?0解: 过直线?的平面束方程为:
3x?y?2z?9?0??2x?4y?z????3x?y?2z?9??0,
即?2?3??x??4???y??1?2??z?9??0,
其中?为待定常数,这平面与平面4x?垂直的条件是
y?z?1
?2?3???4??4???.??1???1?2??.1?0,
即???13. 11所以, 投影平面方程为: 17x+31y?37z?117=0, 投影直线的方程为:
?17x?31y?37z?117?0??4x?y?z?1?0.
3