实用文案
Electrochemistry Communications, 2007, 9: 1276-1281
[8] Boukamp B A, Lesh G C,Huggins R A. All-solid lithium electrodes with mixed-conductor matrix. Journal of the Electrochemical Society, 1981, 128(4): 725-729.
[9] Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature materials, 2010, 9(4): 353-358.
[10] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature nanotechnology, 2008, 3(1): 31-35.
[11]Neudecker B J, Zuhr R A, Bates J B. Lithium silicon tin oxynitride
(Li y SiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics[J]. Journal of power sources, 1999, 81: 27-32.
[12] Bourderau S, Brousse T, Schleich D M. Amorphous silicon as a possible anode material for Li-ion batteries[J]. Journal of power sources, 1999, 81: 233-236.
[13] Lee S J, Lee J K, Chung S H, et al. Stress effect on cycle properties of the silicon thin-film anode[J]. Journal of power sources, 2001, 97: 191-193.
[14] Green M, Fielder E, Scrosati B, et al. Structured silicon anodes for lithium battery applications[J]. Electrochemical and Solid-State Letters, 2003, 6(5): A75-A79.
[15]Takamura T, Ohara S, Uehara M, et al. A vacuum deposited Si film having
a Li extraction capacity over 2000 mAh/g with a long cycle life[J]. Journal of Power Sources, 2004, 129(1): 96-100.
[16]Kim H, Han B, Choo J, et al. Three‐dimensional porous silicon
particles for use in high‐performance lithium secondary batteries[J]. Angewandte Chemie, 2008, 120(52): 10305-10308.
标准文档
实用文案
[17] 李昌明,张仁元,李伟善. 硅材料在锂离子电池中的应用研究进展. 材料导报,2006, 20 (9): 34-37
[18] Wang G X, Sun L, Bradhurst D H, et al. Innovative nanosize lithium storage alloys with silica as active center. J. Power Soureces, 2000, 88: 278-281
[19] Wang G X, Sun L, Bradhurst D H, et al. Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries. J. Alloy. Compd., 2000, 306: 249-252
[20] Lee Y S, Lee J H, Kim Y W, et al. Rapidly solidified Ti–Si alloys/carbon composites as anode for Li-ion batteries. Electrochimica Acta, 2006, 52: 1523-1526
[21] Kim H, Choi J, Sohn H J, et al. The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries.J.Electrochemical Society, 1999, 146(12):4401-4405
[22]Masaki Yoshio, Ralph J. Brodd, et al. Lithium-Ion Batteries Science and Technologies[M].2014.162-163.
[23] Tao H, Fan L Z, Song W L, et al. Hollow core–shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries[J]. Nanoscale, 2014, 6(6): 3138-3142.
[24]Chen S, Gordin M L, Yi R, et al. Silicon core–hollow carbon shell
nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2012, 14(37): 12741-12745.
[25]Li N, Jin S, Liao Q, et al. Encapsulated within graphene shell silicon
nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes[J]. Nano Energy, 2014, 5: 105-115.
[26]Jing S, Jiang H, Hu Y, et al. Graphene supported mesoporous single
crystal silicon on Cu foam as a stable lithium-ion battery anode[J]. Journal of Materials Chemistry A, 2014, 2(39): 16360-16364.
标准文档
实用文案
[27]蔡杰健,高容量锂离子电池硅基材料的研究[D],哈尔滨工业大学,2010,39-57.
[28] Wu H, Zheng G, Liu N, et al. Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano letters, 2012, 12(2): 904-909.
[29] C. K. Chan, R. Ruffo, S. Hong, et al. Structural and Electrochemical Study of the
Reaction of Lithium with Silicon Nanowires. J. Power Sources. 2009,189: 34–39
[30] C. K. Chan, R. Ruffo, S. S. Hong, et al. Surface Chemistry and
Morphology of the Solid Electrolyte Interphase on SiliconnanoWire Lithium-ion Battery Anodes. J.Power Sources. 2009,189: 1132–1140
标准文档