动车组转向架故障原因及改进方法概况 - 图文 下载本文

表2 转向架系统故障模式统计表

从表2中明显看出,转向架系统总共有42个故障模式,制动装置包括轮对等故障达到30条,占26.78%,应重点加强与制动装置相关部件的管理维修和保养工作,及时发现故障隐患,杜绝事故。

1 1

4.2动车组转向架故障原因分析 4.2.1部件设备漏油分析

通过表2分析可知零部件设备漏油在转向架故障中较为常见,可以占到总故障数的25%。通过对设备运行的观察发现可能故障原因是

(1)动车在运转时,在相对封闭的机械箱里,机器在运转时会产生大量的热量。动车组在全日制工作时,箱内温度逐渐升高,箱内压力也会逐渐增大.油液在箱内压力作用下从密封间隙处渗出。

(2)设计不合理;制造质量不良;使用维护不当,检查不及时。设备上的某些静、动配合面缺少密封装置,或采用的密封方案不合适;设备上的某些润滑系统只有给油路,而没有回油路,使油压越来越大,造成泄漏。

4.3制动装置故障分析

动车组制动装置故障在转向架系统故障中占到最大的比例,达到了26%以上。动车组转向架制动装置采用空液转换液压制动方式。制动装置故障不仅会造成动车组途中晚点,而且如处理不当会导致动车组发生事故,严重影响运输秩序,威胁乘客的生命财产安全。

制动系统的常见故障包括了制动控制装置传输不良、制动控制装置故障、制动控制装置速度发电机断线、制动力不足、制动不缓解、监控显示器显示抱死、列车紧急制动不能复位、监控器等控制设备无电等。制动控制装置传输不良时,制动时会检测制动力不足。传输不良主要是光连接器的连接插头松动、接触不良,终端装置接口卡板故障。当制动控制装置速度发电机断线时,车辆将无法进行滑行控制。制动力不足时,可能是UB-TRTD继电器故障、电路故障、制动管系泄漏、EP阀故障、检测传感器故障、BCU故障等。但出现制动抱死故障显示时,可能是由速度传感器断 线、PCIS防滑阀故障、CI与BCU信息传输故障导致再生制动与空气制动同时发生、BCU内部滑行、抱死检测控制错误显示制动系统故障等造成的。

4.4其他零部件的故障分析

轮对组成故障损伤,因其裸露车体外,且直接与地面钢轨接触,运行状况复杂,且轮对组成乃转向架的重要部件,如有故障易造成严重的事故。其次空气弹簧故障因其材质特殊为橡胶所制,较易被划伤,若运行时间长易造成空气弹簧的故障。其次还有横向减振器和抗蛇行减振器,这两者均为油压减振器,易造成漏

1 2

油故障,从而降低减振效果。制动夹钳的长时间使用及检修维护不当,使制动装置易出现故障。

4.5动车组转向架的故障模式、致命性分析(FMECA)

经过前面的分析,基本了解了动车组转向架的故障模式和发生原因,但是仍

不清楚每种失效模式对转向架功能所造成的致命度的大小,所以需要对转向架进行FMECA分析[5-7],以便掌握其可靠性薄弱环节,为可靠性评估与提高可靠度提供科学依据

部件i以失效模式j 发生失效时,该零部件的致命度为:

CRij =α

ijβijλ

i

ij是部件

式中aij是部件i以失效模式j而引起部件的失效模式概率;βi以失

效模式j发生失效造成部件损伤的概率。国标草案中将此称为丧失功能的条件概率。其值为1,表示肯定发生损伤;0.5表示可能发生损伤;0.1表示很少可能发生损伤;0表示无影响。λi是部件i成为基本失效件的故障率采用平均故障率。

通过上面的分析,可以看到在转向架的各个主要部件中轮对部件的部位致命度最大,主要是因为轮对承受了车辆与线路间相互作用的全部载荷及冲击,且直接与地面钢轨接触。其次是制动卡钳(动车)、空气弹簧和轴箱体,它们将是影响转向架可靠性的关键部件。另外,横向减振器部件的致命度也不小,虽然抗蛇行减振器的故障致命度并不很大,但它是使动车组在行驶时具有良好的平稳性、舒适度和安全性的保证,列车在高速行驶中易发生转向架蛇行运动,所以也应该加以重视。具体到故障模式致命度来看轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损等,是重点针对的对象,对此可以采取以下措施:

(1)对于轮缘擦伤、横向减振器漏油、制动夹钳漏油、空气弹簧破损、橡胶垫破损、磨损、弹簧断裂、弹力不足等故障,要加强车辆行驶前、行驶后检查,必要时采取无损检测或磁力探伤,如发现部件有微小裂纹,应及时更换防止裂纹进一步扩展,磨损加剧等。同时建议使用抗拉压、抗剪切、抗扭转、耐磨损的材料来制造,合理改进制造工艺过程,提高部件的质量和使用寿命。

(2)动车组维修部门维护转向架时应严格按照维修手册规定进行,并对致命度大的部件和模式加以重视。

1 3

第5章.动车组转向架轴承的检测技术与处理

5.1动车组转向架轴承故障诊断的基本内容

动车组转向架轴承故障诊断与监测是通过轴承的劣化损伤以及性能状态参数,来判断和预测其可靠性和使用性,对异常情况的部位!原因和危险程度进行识别和诊断,及时的可靠的反映故障,防止事故的发生,保证整个动车组运行正常\总的来说,动车组转向架故障诊断的内容是:状态的监测,故障诊断和正确指导轴承的管理与维修三部分。

1.状态监测状态监测就是要采用各种方法掌握设备的运行状态,如检测!测量!分析和判别等\还需要结合系统的现状以及经验,考虑环境和突发因素,准确判断轴承状态,当其出现异常时,发出警报,提醒相关人员采取及时的措施\系统要具有显示和记录其状态的功能,为设备的故障分析和可靠性分析提供信息和基础数据\

2.故障诊断故障诊断技术的实质是:根据状态监测所获得的信息与数据,结合滚动轴承的运行历史!结构特性和参数条件,对滚动轴承的各种不同类型的故障进行预报和分析,并确定其性质!类型!原因!部位!严重程度!性能趋势和后果\

3.指导轴承的管理维修根据诊断结果,决定设备的维修方式和维修周期\避免/过剩维修0,防止因不必要的拆卸使设备精度降低,延长设备寿命;减少维修时间,提高生产效率和经济效益;减少和避免重大事故发生,故不仅能获得巨大经济效益,而且能获得很好的社会效益\

5.2动车组转向架轴承故障监测常用技术

机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点,从诊断技术的各分支技术来看,美国占领先地位\美国的一些公司,如Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平\发展至今,动车组转向架轴承故障监测的常用技术主要有:振动诊断技术,温度诊断技术,油样分析技术,油膜电阻诊断技术,声发射诊断技术等\下面简要介绍这些方法\振动诊断技术振动诊断技术是应用最早的!使用范围最广的故障监测诊断技术\运行的机械设备产生振动的原因是:表面的接触摩擦和旋转部件的不平衡等\进一步的研究表明:振动的强弱及其包含的主要频率成份和故障类型!部位和原因等有着密切的联系。本论文就是采用振动诊断技术是通过安装在轴承座和箱体上的压电式传感器采集轴承的振动信号,并采用有效的方法对其进行分析和处理,振动分析法具有:

1 4