an+1满足bn=a,且b1009=1,则a2018的值为________. n16.设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为________. 小题专项练习(五) 等差数列与等比数列 ???a1=3,?a1=3,1.B 由题可知?∴? ?3a1+3d=3,?d=-2,?? ∴S4=4a1+6d=0,故选B. 2.B 设等比数列的公比为q, 由题得a1q2·a1q4=4(a1q3-1), ∴q6=4q3-4, 即q6-4q3+4=0 ∴q3=2, ∴a7=a1q6=4,故选B. 3.C Sm=a1+a2+…+am, S2m-Sm=am+1+am+2+…+a2m, ∴(S2m-Sm)-Sm==m2d,故选4.C 由3aan+11n+1+an=0,得an=-3, ∴数列{a1n}是等比数列,公比q=-3, ∵a42=-3,∴a1=4, 1-??∴S?-1?3?10??10=4×?1-1?1+1=3?310??,故选C. 35.B S11?a1+a11?11?a3+a9?11=2=2=88,∴a3+a9=16,故选B. 6.C ∵a1a6=a3a4, 得a3a4=2a3,∴a4=2, 又∵a34与2a6的等差中项为2, ∴a14+2a6=3,∴a6=2,∵q>0, ∴q=a61a4=2, ∴aa41=q3=16, C. ∴S5=1=31,故选C. 1-27.C S4=S2+q2S2, 2S4S2+qS2∴S=S=1+q2=5,故选C. 228.C 由a3+a9=a4+a8=10,∵a4>a8 ???a4a8=9,?a4=9,∴?,得? ???a4+a8=10?a8=1,a8-a4∴d=4=-2, ∴a9=-1<0, 故{Sn}中最大项为S8,故选C. 9.C 由a2a4得(a1+2d)2=a1·(a1+3d),得a1=-4d, 3=a1·S3-S2a1+2da3∴===2,故选C. S5-S3a5+a42a1+7d1110.D 由a1=1,a4=8,得q=2, 11-4n1?212??1-n?<, ∴a1a2+a2a3+…+anan+1=1×2×4?31=3?1-42∴k≥3,故选D. 11.C ∵a2n=S2n-1, ?2n-1??a1+a2n-1?2∴an==(2n-1)an 2∴an=2n-1, λ?-1?nn+8·?-1?n+1≤ nan+1n+1[n+8·?-1?]?2n+1?n∴λ(-1)≤, n?n+8??2n+1?若n为奇数,不等式化为-λ≤ n?n+8??2n+1?8令t==2n+n+17, n当n=1时,t=27, 1???161-25??? 7777当n=3时,t=3<27,∴tmin=3, 7777∴-λ<3,∴λ>-3, ?n-8??2n+1?当n为偶数时,不等式化为λ≤ n?n-8??2n+1?8令t==2n-n-15, n当n=2时,tmin=-15,∴λ≤-15, ?77?故实数λ的取值范围是?-3,-15?,故选C. ??12.D ∵数列{an}是等比数列, n1+2+…+(n-1)2∴Tn=a1a2…an=a1q=an 1qn+1n(2n+1)∴T2n+1=a2q,T2n+1与a1的符号不能确定,A、B13n?3n+1??n-1?n错, n+1T3n+1=a3q2,T3n+1与a1的符号不能确定,C错, 1n+12n(4n+1)2n(4n+1)T4n+1=a4q,∵q>0,∴T4n+1与a1的符号相同,故1选D. 13.2 S10解析:若S=4, 5∴S10=4S5, ?10×95×4??∴10a1+2d=45a1+d?, 2??∴d=2a1, 4a1∴d=2. 14.2n-1 解析:由S3-3S2+2S1=0, 得a1+a2+a3-3(a1+a2)+2a1=0, 即a3=2a2,∴q=2, 1-2nn∴Sn==2-1. 1-215.3 a2018a2017a2016a2解析:a2018=a·a1 a·a…a·2017201620151