¡¾¸ß¿¼±Ø±¸¡¿µ¼ÊýѹÖáÌâÌâÐ͹éÄÉ ÏÂÔØ±¾ÎÄ

µ¼ÊýѹÖáÌâÌâÐÍ

1. ¸ß¿¼ÃüÌâ»Ø¹Ë

Àý1ÒÑÖªº¯Êýf(x)£½ex£­ln(x£«m)£®£¨2013È«¹úпαê¢ò¾í£©

(1)Éèx£½0ÊÇf(x)µÄ¼«Öµµã£¬Çóm£¬²¢ÌÖÂÛf(x)µÄµ¥µ÷ÐÔ£» (2)µ±m¡Ü2ʱ£¬Ö¤Ã÷f(x)>0.

11

(1)½â f(x)£½ex£­ln(x£«m)?f¡ä(x)£½ex£­?f¡ä(0)£½e0£­£½0?m£½1£¬

x£«m0£«m

exx£«£­11x

¶¨ÒåÓòΪ{x|x>£­1}£¬f¡ä(x)£½e£­£½£¬

x£«mx£«1

ÏÔÈ»f(x)ÔÚ(£­1,0]Éϵ¥µ÷µÝ¼õ£¬ÔÚ[0£¬£«¡Þ)Éϵ¥µ÷µÝÔö£®

1

(2)Ö¤Ã÷ g(x)£½ex£­ln(x£«2)£¬Ôòg¡ä(x)£½ex£­(x>£­2)£®

x£«2

11

h(x)£½g¡ä(x)£½ex£­(x>£­2)?h¡ä(x)£½ex£«>0£¬

x£«2x£«2ËùÒÔh(x)ÊÇÔöº¯Êý£¬h(x)£½0ÖÁ¶àÖ»ÓÐÒ»¸öʵÊý¸ù£¬

1111

ÓÖg¡ä(£­)£½£­<0£¬g¡ä(0)£½1£­>0£¬

22e3

2

1

£­£¬0?ÄÚ£¬ ËùÒÔh(x)£½g¡ä(x)£½0µÄΨһʵ¸ùÔÚÇø¼ä??2?

11

£­

1£­

ËùÒÔ£¬et£½?t£«2£½et£¬

t£«2

µ±x¡Ê(£­2£¬t)ʱ£¬g¡ä(x)g¡ä(t)£½0£¬g(x)µ¥µ÷µÝÔö£»

£«t21t

ËùÒÔg(x)min£½g(t)£½e£­ln(t£«2)£½£«t£½>0£¬

t£«2t£«2

µ±m¡Ü2ʱ£¬ÓÐln(x£«m)¡Üln(x£«2)£¬

ËùÒÔf(x)£½ex£­ln(x£«m)¡Ýex£­ln(x£«2)£½g(x)¡Ýg(x)min>0. Àý2ÒÑÖªº¯Êýf(x)Âú×ãf(x)?f'(1)ex?1?f(0)x?12x£¨2012È«¹úпα꣩ 2(1)Çóf(x)µÄ½âÎöʽ¼°µ¥µ÷Çø¼ä£»

12x?ax?b£¬Çó(a?1)bµÄ×î´óÖµ¡£ 212x?1x?1£¨1£©f(x)?f?(1)e?f(0)x?x?f?(x)?f?(1)e?f(0)?x

2 Áîx?1µÃ£ºf(0)?1

12?11?(1x?? f(x)?f)e??x?xf(?0)?f?(1?e)?1f (1)e212xx µÃ£ºf(x)?e?x?x?g(x)?f?(x)?e?1?x

2(2)Èôf(x)?µÚ 1 Ò³ ¹² 25 Ò³

x)x?RÉϵ¥µ÷µÝÔö g?(x)?e?1?0?y?g(ÔÚ

xx(?)?0?f(?0)x ?12x µÃ£ºf(x)µÄ½âÎöʽΪf(x)?e?x?x

2 ÇÒµ¥µ÷µÝÔöÇø¼äΪ(0,??)£¬µ¥µ÷µÝ¼õÇø¼äΪ(??,0)

12xx£¨2£©f(x)?x?ax?b?h(x)?e?(a?1)x?b?0µÃh?(x)?e?(a?1)

2 ¢Ùµ±a?1?0ʱ£¬h?(x)?0?y?h(x)ÔÚx?RÉϵ¥µ÷µÝÔö x???ʱ£¬h(x)???Óëh(x)?0ì¶Ü

¢Úµ±a?1?0ʱ£¬h?(x)?0?x?ln(a?1),h?(x)?0?x?ln(a?1) µÃ£ºµ±x?ln(a?1)ʱ£¬h(x)min?(a?1)?(a?1)ln(a?1)?b?0

(a?1)b?(a?1)?(a?1)ln(a?1)(a?1?0) ÁîF(x)?x?xlnx(x?0)£»ÔòF?(x)?x(1?2lnx)

2222? f?(x)?0?f?(0?)x?0f,e,F?(x)?0?x?e e µ±x?eʱ£¬F(x)max?

2e µ±a?e?1,b?eʱ£¬(a?1)bµÄ×î´óֵΪ

2alnxb?£¬ÇúÏßy?f(x)ÔÚµã(1,f(1))´¦µÄÇÐÏß·½³ÌΪÀý3ÒÑÖªº¯Êýf(x)?x?1xx?2y?3?0¡££¨2011È«¹úпα꣩ £¨¢ñ£©Çóa¡¢bµÄÖµ£»

lnxk£¨¢ò£©Èç¹ûµ±x?0£¬ÇÒx?1ʱ£¬f(x)??£¬ÇókµÄȡֵ·¶Î§¡£

x?1xx?1?(?lnx)1bxx?2y?3?0?½â£¨¢ñ£©f'(x)? ÓÉÓÚÖ±ÏßµÄбÂÊΪ£¬ ?(x?1)2x22?f(1)?1,?b?1,??ÇÒ¹ýµã(1,1)£¬¹Ê?½âµÃa?1£¬b?1¡£ 1¼´?a1

f'(1)??,??b??,??2?22£¨¢ò£©ÓÉ£¨¢ñ£©Öªf(x)?

F?(x)?0?0?x?lnx1?£¬ËùÒÔ x?1xlnxk1(k?1)(x2?1)f(x)?(?)?(2lnx?)¡£ 2x?1x1?xx(k?1)(x2?1)?2x(k?1)(x2?1)(x?0)£¬Ôòh'(x)?¿¼ÂǺ¯Êýh(x)?2lnx?¡£

x2xµÚ 2 Ò³ ¹² 25 Ò³

22k(x?1)?(x?1)(i)Éèk?0£¬ÓÉh'(x)?Öª£¬µ±x?1ʱ£¬h'(x)?0£¬h(x)µÝ¼õ¡£¶ø2x1h(1)?0 ¹Êµ±x?(0,1)ʱ£¬ h(x)?0£¬¿ÉµÃh(x)?0£»

1?x21µ±x?£¨1£¬+?£©Ê±£¬h£¨x£©<0£¬¿ÉµÃ h£¨x£©>0 21?xlnxklnxk´Ó¶øµ±x>0,ÇÒx?1ʱ£¬f£¨x£©-£¨+£©>0£¬¼´f£¨x£©>+. x?1xx?1x22£¨ii£©Éè0

11£©Ê±£¬£¨k-1£©£¨x2 +1£©??4?4(k?1)2?0£¬¶Ô³ÆÖáx=?1µ±x?£¨1£¬

1?k1?k.

'11+2x>0,¹Êh (x£©>0,¶øh£¨1£©=0£¬¹Êµ±x?£¨1£¬£©Ê±£¬h£¨x£©>0£¬¿ÉµÃ

1?k1?x2h£¨x£©<0,ÓëÌâÉèì¶Ü¡£

2'2x?1?2xh£¨iii£©Éèk?1.´Ëʱ£¬(k?1)(x?1)?2x?0?£¨x£©>0,¶øh£¨1£©=0£¬1¹Êµ±x? £¨1£¬+?£©Ê±£¬h£¨x£©>0£¬¿ÉµÃ h£¨x£©<0,ÓëÌâÉèì¶Ü¡£

1?x2 ×ۺϵã¬kµÄȡֵ·¶Î§Îª£¨-?£¬0]

Àý4ÒÑÖªº¯Êýf(x)£½(x3+3x2+ax+b)ex. £¨2009ÄþÏÄ¡¢º£ÄÏ£©

(1)Èôa£½b£½£­3,Çóf(x)µÄµ¥µ÷Çø¼ä;

(2)Èôf(x)ÔÚ(£­¡Þ,¦Á),(2,¦Â)µ¥µ÷Ôö¼Ó,ÔÚ(¦Á,2),(¦Â,+¡Þ)µ¥µ÷¼õÉÙ,Ö¤Ã÷¦Â£­¦Á£¾6. ½â: (1)µ±a£½b£½£­3ʱ,f(x)£½(x3+3x2£­3x£­3)e£­x,¹Ê

f¡ä(x)£½£­(x3+3x2£­3x£­3)e£­x +(3x2+6x£­3)e£­x £½£­e£­x (x3£­9x)£½£­x(x£­3)(x+3)e£­x.

µ±x£¼£­3»ò0£¼x£¼3ʱ,f¡ä(x)£¾0;µ±£­3£¼x£¼0»òx£¾3ʱ,f¡ä(x)£¼0. ´Ó¶øf(x)ÔÚ(£­¡Þ,£­3),(0,3)µ¥µ÷Ôö¼Ó,ÔÚ(£­3,0),(3,+¡Þ)µ¥µ÷¼õÉÙ.

(2)f¡ä(x)£½£­(x3+3x2+ax+b)e£­x +(3x2+6x+a)e£­x£½£­e£­x£Ûx3+(a£­6)x+b£­a£Ý. ÓÉÌõ¼þµÃf¡ä(2)£½0,¼´23+2(a£­6)+b£­a£½0,¹Êb£½4£­a.

´Ó¶øf¡ä(x)£½£­e£­x£Ûx3+(a£­6)x+4£­2a£Ý.ÒòΪf¡ä(¦Á)£½f¡ä(¦Â)£½0,

ËùÒÔx3+(a£­6)x+4£­2a£½(x£­2)(x£­¦Á)(x£­¦Â)£½(x£­2)£Ûx2£­(¦Á+¦Â)x+¦Á¦Â£Ý. ½«ÓÒ±ßÕ¹¿ª,Óë×ó±ß±È½ÏϵÊý,µÃ¦Á+¦Â£½£­2,¦Á¦Â£½a£­2.

£­

¹Ê????

(???)2?4???12?4a.ÓÖ(¦Â£­2)(¦Á£­2)£¼0£¬

¼´¦Á¦Â£­2(¦Á+¦Â)+4£¼0.Óɴ˿ɵÃa£¼£­6. ÓÚÊǦ£­¦Á£¾6.

2. ÔÚ½âÌâÖг£ÓõÄÓйؽáÂÛ¡ù

(1)ÇúÏßy?f(x)ÔÚx?x0´¦µÄÇÐÏßµÄбÂʵÈÓÚf?(x0)£¬ÇÒÇÐÏß·½³ÌΪ y?f?(x0)(x?x0)?f(x0)¡£ µÚ 3 Ò³ ¹² 25 Ò³