¾«Æ·Îĵµ£¬»¶ÓÏÂÔØ
Èç¹ûÄãϲ»¶Õâ·ÝÎĵµ£¬»¶ÓÏÂÔØ£¬Áí×£Äú³É¼¨½ø²½£¬Ñ§Ï°Óä¿ì£¡
6.1 ƽÐÐËıßÐμ°ÆäÐÔÖÊ
Ò»£®½â´ðÌ⣨¹²13СÌ⣩
1£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬BC=2AB=4£¬µãE¡¢F·Ö±ðÊÇBC¡¢ADµÄÖе㣮 £¨1£©ÇóÖ¤£º¡÷ABE¡Õ¡÷CDF£»
£¨2£©µ±AE=CEʱ£¬ÇóËıßÐÎAECFµÄÃæ»ý£®
£¨µÚ1Ìâͼ£©
2£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎÖУ¬AE¡ÍBCÓÚE£¬AF¡ÍCDÓÚF£¬¡ÏEAF=60¡ã£¬BE=2£¬DF=3£¬ÇóAB£¬BCµÄ³¤¼°Æ½ÐÐËıßÐÎABCDµÄÃæ»ý£¿
£¨µÚ2Ìâͼ£©
3£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDµÄ¶Ô½ÇÏßAC¡¢BDÏཻÓÚµãO£¬ÇÒAC=10£¬BD=16£¬AB=6£¬Çó¡÷OCDµÄÖܳ¤£®
£¨µÚ3Ìâͼ£©
4£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬AB=10£¬AD=8£¬AC¡ÍBC£®ÇóBC£¬CD£¬AC£¬OAµÄ³¤£¬ÒÔ¼°Æ½ÐÐËıßÐÎABCDµÄÃæ»ý£®
£¨µÚ4Ìâͼ£©
5£®Èçͼ£¬ËıßÐÎABCDΪƽÐÐËıßÐΣ¬¡ÏBADµÄ½Çƽ·ÖÏßAE½»CDÓÚµãF£¬½»BCµÄÑÓ³¤ÏßÓÚµãE£®
£¨1£©ÇóÖ¤£ºDC=BE£»
£¨2£©Á¬½ÓBF£¬ÈôBF¡ÍAE£¬ÇóÖ¤£º¡÷ADF¡Õ¡÷ECF£®
£¨µÚ5Ìâͼ£©
6£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬ACÊǶԽÇÏߣ®BE¡ÍAC£¬DF¡ÍAC£¬´¹×ã·Ö±ðÊǵãE£¬F£® £¨1£©ÇóÖ¤£ºAE=CF£®
£¨2£©Á¬½ÓBF£¬Èô¡ÏACB=45¡ã£¬AE=1£¬BE=3£¬ÇóBFµÄ³¤£®
£¨µÚ6Ìâͼ£©
7£®ÒÑÖª£ºÈçͼ£¬E¡¢FÊÇÆ½ÐÐËıßÐÎABCDµÄ¶Ô½ÇÏßBDÉϵÄÁ½µã£¬BE=DF£® ÇóÖ¤£º£¨1£©¡÷ADF¡Õ¡÷CBE£» £¨2£©CE¡ÎAF£®
£¨µÚ7Ìâͼ£©
8£®Èçͼ£¬E¡¢F·Ö±ðƽÐÐËıßÐÎABCD¶Ô½ÇÏßBDÉϵĵ㣬ÇÒBE=DF£® ÇóÖ¤£º¡ÏDAF=¡ÏBCE£®
£¨µÚ8Ìâͼ£©
9£®Èçͼ£¬µãE¡¢F·Ö±ðÔÚÆ½ÐÐËıßÐÎABCDµÄ±ßBC¡¢ADÉÏ£¬ÈôAEƽ·Ö¡ÏBAD£¬CFƽ·Ö¡ÏBCD£¬ÇóÖ¤AF=CE£®
£¨µÚ9Ìâͼ£©
10£®ÒÑÖª£ºÈçͼ£¬?ABCDµÄ¶Ô½ÇÏßAC¡¢BDÏཻÓÚµãO£¬E¡¢FÊÇBDÉϵÄÁ½µã£¬ÇÒBE=DF£¬ÇóÖ¤£ºAE=CF£®