°ËÄê¼¶ÊýѧϲáµÚ6ÕÂÆ½ÐÐËıßÐÎ6.1ƽÐÐËıßÐμ°ÆäÐÔÖÊ×÷ÒµÉè¼Æ(аæ)Çൺ°æ ÏÂÔØ±¾ÎÄ

¾«Æ·Îĵµ£¬»¶Ó­ÏÂÔØ

Èç¹ûÄãϲ»¶Õâ·ÝÎĵµ£¬»¶Ó­ÏÂÔØ£¬Áí×£Äú³É¼¨½ø²½£¬Ñ§Ï°Óä¿ì£¡

6.1 ƽÐÐËıßÐμ°ÆäÐÔÖÊ

Ò»£®½â´ðÌ⣨¹²13СÌ⣩

1£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬BC=2AB=4£¬µãE¡¢F·Ö±ðÊÇBC¡¢ADµÄÖе㣮 £¨1£©ÇóÖ¤£º¡÷ABE¡Õ¡÷CDF£»

£¨2£©µ±AE=CEʱ£¬ÇóËıßÐÎAECFµÄÃæ»ý£®

£¨µÚ1Ìâͼ£©

2£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎÖУ¬AE¡ÍBCÓÚE£¬AF¡ÍCDÓÚF£¬¡ÏEAF=60¡ã£¬BE=2£¬DF=3£¬ÇóAB£¬BCµÄ³¤¼°Æ½ÐÐËıßÐÎABCDµÄÃæ»ý£¿

£¨µÚ2Ìâͼ£©

3£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDµÄ¶Ô½ÇÏßAC¡¢BDÏཻÓÚµãO£¬ÇÒAC=10£¬BD=16£¬AB=6£¬Çó¡÷OCDµÄÖܳ¤£®

£¨µÚ3Ìâͼ£©

4£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬AB=10£¬AD=8£¬AC¡ÍBC£®ÇóBC£¬CD£¬AC£¬OAµÄ³¤£¬ÒÔ¼°Æ½ÐÐËıßÐÎABCDµÄÃæ»ý£®

£¨µÚ4Ìâͼ£©

5£®Èçͼ£¬ËıßÐÎABCDΪƽÐÐËıßÐΣ¬¡ÏBADµÄ½Çƽ·ÖÏßAE½»CDÓÚµãF£¬½»BCµÄÑÓ³¤ÏßÓÚµãE£®

£¨1£©ÇóÖ¤£ºDC=BE£»

£¨2£©Á¬½ÓBF£¬ÈôBF¡ÍAE£¬ÇóÖ¤£º¡÷ADF¡Õ¡÷ECF£®

£¨µÚ5Ìâͼ£©

6£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬ACÊǶԽÇÏߣ®BE¡ÍAC£¬DF¡ÍAC£¬´¹×ã·Ö±ðÊǵãE£¬F£® £¨1£©ÇóÖ¤£ºAE=CF£®

£¨2£©Á¬½ÓBF£¬Èô¡ÏACB=45¡ã£¬AE=1£¬BE=3£¬ÇóBFµÄ³¤£®

£¨µÚ6Ìâͼ£©

7£®ÒÑÖª£ºÈçͼ£¬E¡¢FÊÇÆ½ÐÐËıßÐÎABCDµÄ¶Ô½ÇÏßBDÉϵÄÁ½µã£¬BE=DF£® ÇóÖ¤£º£¨1£©¡÷ADF¡Õ¡÷CBE£» £¨2£©CE¡ÎAF£®

£¨µÚ7Ìâͼ£©

8£®Èçͼ£¬E¡¢F·Ö±ðƽÐÐËıßÐÎABCD¶Ô½ÇÏßBDÉϵĵ㣬ÇÒBE=DF£® ÇóÖ¤£º¡ÏDAF=¡ÏBCE£®

£¨µÚ8Ìâͼ£©

9£®Èçͼ£¬µãE¡¢F·Ö±ðÔÚÆ½ÐÐËıßÐÎABCDµÄ±ßBC¡¢ADÉÏ£¬ÈôAEƽ·Ö¡ÏBAD£¬CFƽ·Ö¡ÏBCD£¬ÇóÖ¤AF=CE£®

£¨µÚ9Ìâͼ£©

10£®ÒÑÖª£ºÈçͼ£¬?ABCDµÄ¶Ô½ÇÏßAC¡¢BDÏཻÓÚµãO£¬E¡¢FÊÇBDÉϵÄÁ½µã£¬ÇÒBE=DF£¬ÇóÖ¤£ºAE=CF£®