73¡¢Èô
??x?k?dx?2£¬Ôòk=£¨ £©
01a¡¢0 b¡¢1 c¡¢?1 d¡¢
75¡¢
3 2?????(ecosxsinx?x2)dx?£¨ £©
2¦Ð32¦Ð32¦Ð3¦Ð3-1-1B. A. C. 2e?D. e-e?3 3 3 3
76¡¢
?20x?1dx?
A.0 B.1 C.2 D.-2 77¡¢ÎÞÇî»ý·Ö
???11dx?£¨ £© x2C. 13 D.-1
A.¡Þ B.1
d?x278¡¢[?(arctant)dt]?£¨ £©¡£
dx01£¨A£©2arctant £¨B£©?(arctanx)2 £¨C£© (arctanx)2 £¨D£©?(arctant)2 21?t¶þ¡¢Ìî¿ÕÌâ
2¡¢º¯Êýf(x)?ln(x?5)?12?xµÄ¶¨ÒåÓòÊÇ £®
3¡¢Èô
11f(x?)?x2?2?3£¬Ôòf(x)?________.
xx4¡¢limx?sinx? £®
x??x25¡¢Èç¹ûx?0ʱ£¬ÒªÎÞÇîСÁ¿(1?cosx)ÓëasinxµÈ¼Û£¬aÓ¦µÈÓÚ________. 2x?0?ax?bf(x)?6¡¢É裬a?b?0£¬Ôò´¦´¦Á¬ÐøµÄ³ä·Ö±ØÒªÌõ¼þÊÇ?2?(a?b)x?xx?0b?________.
7¡¢¡¢º¯Êýf(x)?1µÄ¼ä¶ÏµãÊÇ_____________ x?1x3?18¡¢y?µÄ¼ä¶ÏµãÊÇ_______________£®
x?19¡¢ÇúÏßy?xÔڵ㣨4, 2£©´¦µÄÇÐÏß·½³ÌÊÇ x?0 £®
10¡¢Éèf(x)Êǿɵ¼º¯ÊýÇÒf(0)?0£¬Ôòlimf(x)£½________________£» x11¡¢ÇúÏßy?x?arctanxÔÚx?0´¦µÄÇÐÏß·½³ÌÊÇ______________£»
6
12¡¢ÉèÓÉ·½³Ìey?ex?xy?0¿ÉÈ·¶¨yÊÇxµÄÒþº¯Êý£¬Ôò
dydx?
x?013¡¢º¯Êýy?tanxÔÚx?0´¦µÄµ¼ÊýΪ £» 14¡¢Éèy?e2x, Çó y??x?0£½__________________£®
15¡¢Èôº¯Êýy?lnx£¬Ôòy??= 2 £®
16¡¢º¯Êýy?3(x?1)µÄפµãÊÇ .
18.Ö¸³öÇúÏßy?xµÄ½¥½üÏß £®
5?x2?x17¡¢ÒÑÖªf(x)µÄÒ»¸öÔº¯ÊýΪe£¬Ôòf(x)= £®
20¡¢
?(1?x)2xdx? .
23¡¢Éèf(x)Á¬Ðø£¬ÇÒ
?x30f(t)dt?x£¬Ôòf(8)? . 24¡¢lim?01xsint2dtx3x?0?
25¡¢
??1(1?x2)3sin5xdx?
£®
£®
26¡¢Èôº¯Êýy?ln3£¬Ôòy?=
27¡¢Èôy = x (x ¨C 1)(x ¨C 2)(x ¨C 3)£¬Ôòy?(0) =
28¡¢º¯Êýy?3(x?1)2µÄµ¥µ÷Ôö¼ÓÇø¼äÊÇ .
29¡¢¹ýµã(1,3)ÇÒÇÐÏßбÂÊΪ2xµÄÇúÏß·½³ÌÊÇy= £®
?x30¡¢º¯Êýy?xe µÄפµãÊÇ £¬¹ÕµãÊÇ £¬Í¹Çø¼äΪ £¬°¼Çø¼äΪ ¡£
x2dx?______________. 31¡¢?01?x21 7
d232.(?sinx2dx)?__________________. dx133.ÉèF(x)??tantdt,ÔòF?(x)?___________.
1x34. ÉèF(x)??tantdt,ÔòF?(x)?___________.
1x236¡¢?541dx?_______________¡£ 2(x?3)1?xdx?_______________________. 1?x39¡¢?ln?1Èý¡¢¼ÆËãÌâ £¨Ò»£©Çó¼«ÏÞ
x2?4x2?3x?2£¨1£©lim?2x?3x?4? £¨2£©lim £¨3£©lim 2x?1x?1x?3x?3x?12x?9x?1?2x2£¨4£©lim £¨5£©lim £¨6£©lim
2x?9x?3x?0x?3x?31?1?xx2?2x?33x3?5x?11??2 £¨8£©lim?2 £¨11£©lim ?? £¨10£©lim22x??x??x?1x?1x?13x?4x?7x??£¨12£©limx?61??3 £¨14£©lim???
x??3x2?x?3x?11?x31?x??sin3xx?2sinxsin(x?1) £¨17£©lim £¨18£©lim 2x?0sin5xx?0x?sinxx?1x?13x?x£¨16£©lim1?cosx1?cosx?1??2?lim£¨19£©lim £¨20£© £¨22£© £¨23£©lim1?lim???1?? 2x?0x?0x??x??xsinxx?x??x?11ln?1?x??2?x£¨24£©lim?1??£¨25£©lim?1?3x? £¨26£©lim?1?2x?x £¨29£© lim
x?0x??x?0x?0xx??xx?sinxlnxex?e?xx2limlimlim£¨30£©lim £¨31£© £¨32£© £¨33£© 32xx?0x???x?0x???xxxex(ex?1)111??1(?x) lim£¨34£©lim? ?? £¨35£©limx?0x?0x?1x?1xe?1cosx?1lnx??£¨¶þ£©Çóµ¼Êý»ò΢·Ö
£¨1£©£®ÇóÏÂÁк¯ÊýµÄµ¼Êý£®
8
1. y?xe2x, 2. , 3. y?(x2?2x?1)10, 4. y?sin4x, 6.y?ex,7. y?ln(x2?sinx?2), 8. y?31x?7cos2x?sin?5,9.y?arcsin(2x?3),
10. y?ln(sinx), 11. y?(lnx)3, 12. y?x2?1ln2x, 13. y?sin3x?cosx2,
?t?dy?x?e 15.ÒÑÖª?, Çó , 16. ÇóÓÉ·½³ÌF£¨x,y£©=0ËùÈ·¶¨µÄÒþº¯Êýy=f(x)µÄµ¼Êý£¨1£©2tdx??y?tey?xlny £¨2£©y?1?xey £¨3£©y?x?lny £¨4£©x2?y2?xy?1
(2)£®ÇóÏÂÁк¯ÊýµÄ΢·Ö£®
£±. y?xsinxlnx, 2. y?sin2x, 3. y?xsin2x, 4. y?ln(1?ex), 5. y?xecosx, £¨Èý£©ÇóÏÂÁк¯ÊýµÄµ¥µ÷Çø¼äºÍ¼«Öµ
£¨1£©y?x3?3x2?9x?15 £¨2£©y?x?ex?1 £¨3£©y?x4?2x2?2 £¨4£©y?x?1?x £¨ËÄ£©»ý·Ö£®
1dx,3. ?cos2xdx, 4. £±. ?edx,2. ?3x?12xx23x2sinxedxdx, 5. , 6. ?xcosxdx, ??x?1xe?dx, 16.
7.
lnx?1xdx 12?x?1?x2dx 13.
xx(xx?2e)dx, 15. ??xcos2xdx,
17.xsinxdx,21. 26.
?2?x0101x?3dx,, 24.
2?2?1e2?2x?1dx,25
?20x?cosxdx
?10xedx, 27.
4x?arccosxdx,
xdx,31.
28.
?0?x,0?x?1, Çósinxdx,29.Éèf(x)???xe,1?x?3??30f(x)dx, 30.
?11?114x2?90dx, 32.
???0edx£¬33.??xdx¡£
??1?x2??£¨Î壩¡¢¶¨»ý·ÖµÄÓ¦ÓÃ
1ÀûÓö¨»ý·ÖÇóÇúÏßËùΧ³ÉÇøÓòµÄÃæ»ý
£¨1 £© ÇóÇúÏßy?2x£¬Ö±Ïßx=0,x=3ºÍxÖáËùΧ³ÉµÄÇú±ßÌÝÐεÄÃæ»ý£» £¨3£©ÇóÓÉÇúÏßy?x2£¬Ö±Ïßx=0,x=1ºÍxÖáËùΧ³ÉµÄͼÐεÄÃæ»ý£» 2ÀûÓö¨»ý·ÖÇóÐýתÌåµÄÌå»ý
£¨1£© ÇóÓÉÁ¬ÐøÇúÏßy?cosxºÍÖ±Ïßx?0,x?תÌåµÄÌå»ý£»
£¨3£©ÇóÓÉÇúÏßy?x3,x?2,y?0,ÈÆxÖáÐýתËùµÃÐýתÌåµÄÌå»ý£»
?2ºÍxÖáËùΧ³ÉµÄͼÐÎÈÆxÖáÐýתËù³ÉÐý
9
£¨4£©ÇóÓÉÇúÏßy?
ËÄ¡¢Ö¤Ã÷¡£
x,x?1,x?4,y?0,ÈÆyÖáÐýתËùµÃÐýתÌåµÄÌå»ý¡£
£¨1£©Ö¤Ã÷·½³Ìx?3x?7x?10?0ÔÚ1Óë2Ö®¼äÖÁÉÙÓÐÒ»¸öʵ¸ù£» £¨2£©Ö¤Ã÷·½³Ìx?2?1ÖÁÉÙÓÐÒ»¸öСÓÚ1µÄÕý¸ù¡£ £¨3£©Ö¤Ã÷·½³Ìx?3x?1ÔÚ£¨1£¬2£©ÄÚÖÁÉÙ´æÔÚÒ»¸öʵ¸ù£»
£¨4£©·½³Ìx?asinx?b£¬ÆäÖÐa?0,b?0£¬ÖÁÉÙÓÐÒ»¸öÕý¸ù£¬²¢ÇÒËü²»³¬¹ýa?b.
5x42x?ln(1?x)?x¡£ 1?x1£¨6£©Ö¤Ã÷µ±x?1ʱ£¬2x?3?¡£
x£¨5£©Ö¤Ã÷µ±x?0ʱ£¬
(7)ÒÑÖªº¯Êýf(x)ÔÚ[0,1]ÉÏÁ¬Ðø£¬ÔÚ(0,1)Äڿɵ¼£¬ÇÒf(0)?0,f(1)?1 Ö¤Ã÷:(1)´æÔÚ??(0,1)£¬Ê¹µÃf(?)?1??£»
(2)´æÔÚÁ½¸ö²»Í¬µÄµã?,??(0,1)£¬Ê¹µÃf?(?)f?(?)?1£®
Îå¡¢Ó¦ÓÃÌâ
£¨1£©Ò»¸öÔ²ÖùÐδóÍ°£¬Òѹ涨Ìå»ýΪV,ҪʹÆä±íÃæ»ýΪ×îС£¬ÎÊÔ²ÖùµÄµ×°ë¾¶¼°¸ßÓ¦ÊǶàÉÙ£¿
£¨2£©Ä³³µ¼ä¿¿Ç½±Ú¸ÇÒ»¼ä³¤·½ÐÎСÎÝ£¬ÏÖÓдæשֻ¹»Æö20Ã׳¤µÄǽ±Ú£¬ÎÊӦΧ³ÉÔõÑùµÄ³¤·½ÐβÅÄÜʹÕâ¼äСÎݵÄÃæ»ý×î´ó£¿
£¨3£©Ä³µØÇø·À¿Õ¶´µÄ½ØÃæ»ýÄ⽨³É¾ØÐμӰëÔ²¡£½ØÃæµÄÃæ»ýΪ5ƽ·½Ã×£¬Îʵ׿íxΪ¶àÉÙʱ²ÅÄÜʹ½ØÃæµÄÖܳ¤×îС£¿
(4). ij³§Ã¿ÅúÉú²úAÉÌÆ·x̨µÄ·ÑÓÃΪC(x)?5x?200(ÍòÔª),µÃµ½µÄÊÕÈëΪ
R(x)?10x?0.01x2(ÍòÔª), ÎÊÿÅúÉú²ú¶àÉŲ̀²ÅÄÜʹÆóÒµ»ñµÃ×î´óÀûÈó.
10