........word...完美整理精品文档
(二) 核酸分子杂交技术(molecular gbridization technique) (特异核酸的定性定位)
概念 两条具有互补核酸顺序的单链核酸分子片断,在适当的实验条件下,通过氢键结合,形成DNA-DNA、DNA-RNA或RNA-RNA双链分子的过程。 印迹杂交 (blot hybridization)
用已知的带有标记的特定核酸分子(或抗体、蛋白质分子)作为探针,与通过印迹被转移的核酸分子(或抗原、蛋白质分子)片段杂交的过程。
(1) Southern blotting (DNA印迹法) 将分离的DNA片段通过毛细管作用转移到硝基纤维素膜上,用DNA探针与之杂交的过程。是以发明此项技术的人名命名的(E?M?Southern)。是体外分析特异DNA序列的方法。
(2) RNA印迹术(Northern blotting) (3) 蛋白质印迹术(Western blotting)
(4) Eastern blotting(Western blotting的变形) 当用凝胶进行抗原抗体反应,再进行印迹的方法)。
(5) DNA与蛋白质的体外吸附技术(Southwestern blotting) 结合了Western印迹与southern印迹两种实验方法的特点而设计的一种检测序列特异性DNA结合蛋白的实验方法(翟P51)。
(6) 原位杂交(Insitu hybridization) 用已知的带有标记的特定核酸分子作为探针,来测定与之成互补关系的染色体DNA区段的位置。 四、电镜放射自显影技术
原理 这是一种利用放射性同位素作为标记物对细胞化学物质进行超显微结构的定位、定性或定量的实验技术。
五、定量细胞化学分析技术 (一) 显微分光光度测定技术
第三节 细胞培养、细胞工程与显微操作技术
一、细胞培养
(一)动物细胞培养
(二)植物细胞的培养 包括单倍体细胞的培养和原生质体培养
“全能性”—指生物体的每一生活细胞,处于适当条件下,都具有进行独立生长发育,并形成一个完整生物个体的能力。 1单倍体细胞的培养 2原生质体培养
3植物细胞杂交(融合)
(三)突变株和非细胞体系在细胞生物学研究中的应用 二、细胞工程
概念 应用细胞生物学和分子生物学的理论、方法和技术,按人们的预定设计蓝图有计划的保存、改变和创造细胞遗传物质,以产生新的物种和品系,或大规模培养组织细胞以获得生物产品。
该技术在细胞和亚细胞水平上开辟了基因重组的新途径,不需分离、提纯、剪切、拼接等基因操作,只需将遗传物质直接转入受体细胞,就可形成杂交细胞。 主要技术领域
细胞(组织、器官)培养:in vivo 在体、活体、生物体内
.......专业资料供学习分享下载
........word...完美整理精品文档
in vitro 离体、生物体外
细胞融合(体细胞杂交、细胞并合) 细胞拆合(细胞质工程、细胞器移植) 染色体(组)工程
繁殖生物学技术(胚胎冷冻技术、试管婴儿、生物复制、胚胎移植、发育工程、胚胎工程、胚胎分割技术、胚胎融合技术、嵌合体)
组分移植技术 将细胞的组分(核、质、染色体、甚至基因)直接移植到另一个细胞中去的技术
第四章 细胞膜与细胞表面
教学目的 :
1 掌握质膜的分子模型
2 了解流动镶嵌模型的主要特点 3 掌握细胞连接的方式和特点 教学重点 流动镶嵌模型结构要点 教学难点 细胞连接的超微结构
第一节 细胞膜与细胞表面的特化结构 一、细胞膜的结构模型 细胞膜(Cell membrane) 指围绕在细胞最外层,由脂类和蛋白质组成的薄膜。是所有细胞共有的包被(原生质,细胞质)的一层膜。又有原生质膜(Plasmalemma)之称,通常简称质膜(Plasma membrane)。
1、 双分子片层模型(bimolecular leaflet model)
这一模型是Danielli & Davson于1935年提出的,因此又称Danielli & davson模型。 2、 单位膜模型(The unit membrane model)
这个模型是1957~1959年,英国伦敦大学的罗伯逊(Robertson),通过电镜观察后提出的。 3、流动镶嵌模型(fluid mosaic model) 这个模型的主要内容可归纳为:
○1脂类物质以双分子层排列,构成膜的骨架;
○2镶嵌性 蛋白质分子镶嵌在脂双层的网架中。存在方式有内在蛋白(整体蛋白)和外在蛋白(边周蛋白)。○3不对称性 蛋白质分子和脂质分子在膜上的分布具不对称性,膜两侧的分子性质和结构不同。
○4流动性 脂质双分子层和蛋白质是可以流动或运动的
脂质分子的运动性:有实验表明,类脂分子的脂肪酸链部分在正常生理状态下,可作多种形式的运动:旋转、振荡、摆动、翻转,同时整个分子可作侧向扩散运动。
蛋白质分子的运动性:有侧向扩散和旋转两种方式,受周围膜质性质和相态的制约。荧光抗体免疫标记可观察。
综合流动镶嵌模型之内容,不难看出,其突出特点在于,流动性、镶嵌性、不对称性和蛋白质极性。由此造成各种膜的功能差异。 4、晶格镶嵌模型(蛋白液晶膜模型) 5、板块镶嵌模型
最近有人提出脂筏模型(Lipid rafts model)。目前认为,这些模型并无本质区别,只是对
.......专业资料供学习分享下载
........word...完美整理精品文档
流动镶嵌模型的进一步补充说明,不能作为膜的通用模型。 二、质膜的化学组成
细胞膜几乎全都是脂类(50%)和蛋白质(40%),仅含少量糖类(2~10%糖脂和糖蛋白)和微量核酸(细菌质膜、核膜、mit、chl内膜),结合方式及存在意义尚不清楚。 (一)膜脂(Lipids) (二)蛋白质(Protein)(膜蛋白) (三)糖类(Carbohydrate)
三、质膜的功能(function of c.m) 质膜与外界环境隔离开,通过它保持着一个相对稳定的细胞内环境,在细胞生命活动中行使着多种重要功能,概括为:物质运输,能量转换,信息传递,细胞识别,细胞连接,代谢调控,膜电位维持等。
四、骨架与细胞表面的特化结构
膜骨架(membrane associated cytoskeleton)
指质膜下与膜蛋白相连的由纤维蛋白组成的网架结构,参与维持细胞质膜的形状并协助质膜完成多种生理机能。早期有人称膜下溶胶层,实质为膜骨架。 第二节 细胞连接
细胞连接可分为三大类:即
一、封闭连接
紧密连接(tightjunction )为典型的封闭连接,又称结合小带或封闭小带(zonula oceludens),是相邻两细胞膜紧紧靠在一起的连接方式,中间无空隙,并且两质膜外表面互相融合,所以电镜下观察呈三暗夹两明的五层结构。 二、锚定连接
通过这种连接方式将相邻细胞的骨架系统或将细胞与基质相连成一个坚挺、有序的细胞群体。
1、桥粒和半桥粒(与中间纤维有关)
○1桥粒(desmosme, maculae adherens) 指相邻细胞间形成的“钮扣”样结构,联结处约有30nm的间隙,间隙充满丝状的粘多糖性物质,其中有一层电子密度较高的接触层,或称中央层(桥粒蛋白)将间隙等分为二。
○2半桥粒:位于表皮基细胞与基膜接触的一面,由于相对应的为基膜而不是细胞,因而称半桥粒(hemides mosome)。
2、粘着带与粘着斑(与肌动蛋白丝有关)
○1粘着带 介于紧密连接与桥粒之间,亦称为中间连接。是相邻细胞间有较宽(15~20nm)间隙的一种联结方式。
○2粘着斑 是肌动蛋白纤维与细胞外基质之间的连接方式。如贴壁细胞的贴壁行为,通过粘着斑贴在瓶壁上。 三、通讯连接
1 间隙连接(gap junction) 又有缝隙联结或接合斑(nexus)、缝管连接或封闭筋膜(fascia occludens)之称,是相邻细胞间有2-3nm间隙的一种连接方式。电镜下观察联结处呈四暗夹三明的七层结构之称。 2 植物细胞的连接——胞间连丝(Plasmodesma)
在植物细胞,两相邻细胞的壁之间靠一层称作胞间层(中胶层middle tamella)的果胶类(Pectin)物质粘合在起,但在有些部位,细胞壁及胞间层并不连续,在此有原生质丝通过而勾通相邻两细胞,这便是植物细胞特有的连接方式——胞间连丝,是指相邻植物细胞穿通
.......专业资料供学习分享下载
........word...完美整理精品文档
细胞壁的细胞质通路。
3 化学突触:是可兴奋细胞之间的连接方式,通过释放神经递质(如乙酰胆碱)来传导神经冲动,电信号→化学信号→电信号 (四)细胞表面的粘着因子
第三节 细胞外被与细胞外基质 一、细胞外被(Cell coat) 又称糖萼(glgcocalyx),指由细胞产生的、与细胞膜外表面联系密切的粘多糖类物质。由于它林立在细胞表面,与质膜中蛋白质和脂类结合,故可认为它是质膜的组成部分,但有其独立性。有人将细胞外被与质膜比喻成“毛”与“皮”的关系。 二、细胞外基质(extracellular matrix) 分布于细胞外空间(如细胞之间或细胞表面),由细胞分泌的蛋白和多糖构成的网络结构。与膜关系不密切,功能在于:○1细胞间粘着;○2保护作用;○3维持细胞外环境(调节细胞周围的物质浓度);○4过滤作用等等。在形态发生中作用重大,包括:细胞迁移、增殖、形态变化、分化、保护、组建等。 主要包括四大类物质 (一)胶原(collagen):属糖蛋白类物质,为纤维状蛋白多聚体,含量最高,具刚性,抗张强度大,构成细胞外基质的骨架体系。 (二)氨基聚糖(glycosaminoglycan GAC)和蛋白聚糖(proteoglycan,PG)(粘多糖,粘蛋白)
(三)层粘连蛋白(Lamimin,LN)(较大的糖蛋白分子)和纤粘连蛋白(fibronectin,FN)(由两条或更多的肽链及一些低聚糖组成。对细胞迁移作用大)。 (四)弹性蛋白
第五章 物质的跨膜运输与信号传递
教学目的 :
1 掌握物质跨膜运输的方式 2 掌握细胞通讯的基础知识 3 掌握细胞信号转导的具体方式 教学重点物质跨膜运输的方式,
教学难点 大分子的运输机理,细胞信号转导的具体方式
第一节 物质的跨膜运输
一、 被动运输(Passive transport)
指通过简单扩散或协助扩散实现物质从浓度高处经质膜向浓度低处运输的方式。运输速率依赖于膜两侧被运送物质的浓度差及其分子大小、电荷性质等。不需要细胞代谢供应能量。 (一)简单扩散(simple diffusion)
指物质顺浓度梯度的扩散,不需要消耗细胞本身的代谢能,也不需专一的载体(膜蛋白),只要物质在膜两侧保持一定的浓度差,物质便扩散穿膜,又称自由扩散(free diffusion)。特点:
(二)协助扩散(facilitated diffusion) 又称促进扩散。绝大多数在细胞代谢上非常重要的生物分子,如各种极性分子和某些无机离子(糖、氨基酸、核苷酸及细胞代谢物等)是不溶于脂的(非脂溶性物质),但它们可以有
.......专业资料供学习分享下载
........word...完美整理精品文档
效地进入细胞,只是扩散速度并不总是随浓度梯度的增大而加快,而是在一定限度内同物质浓度成正比,超过一定限度,即使提高浓度差,扩散速度也不会再高。分析知它们是通过另一种被动运输方式——协助扩散进行的。这种运输方式除了依赖物质浓度差以外,还必须依赖于专一性的膜运输蛋白(转运膜蛋白)。 膜运输蛋白(memberan transport pr.): 镶嵌在质膜上的、与物质运输有关的跨膜蛋白质称膜运输蛋白,是一种横穿脂双层的跨膜分子,包括两类: 1隧道蛋白(channel pr.)(通道蛋白、槽蛋白):以其亲水区构成亲水通道和离子通道,允许水及一定大小和电荷的离子通过。
离子通道(亦称门孔、门隧道)通常呈关闭状态,只有当膜电位或化学信号物质刺激后才开启通道。膜电位刺激开放的离子通道称电位门通道;化学信号物质刺激开放的通道称配体门通道。
2载体蛋白(carrier pr.):识别结合特异性底物后通过构象变化实现物质转移。类似于酶与底物的作用,故又称“透性酶”(Permease)。
综上,凡是借助于载体蛋白和通道蛋白顺浓度梯度的物质运输方式称facilitated diffusion、或促进扩散或易化扩散。葡萄糖进入红细胞,进入小肠上皮细胞通常以这种方式。
协助扩散有三个特点:○1低浓度时比简单扩散速度快;○2存在最大转运速度;○3有转运膜蛋白存在,故具有选择性、特异性。 二、主动运输(active transport)
又称代谢关联运输(metabolically linked tramsport),是物质运输的主要方式。包括由ATP直接提供能量和间接提供能量两种运输方式。 (一)ATP直接提供能量的主动运输—离子泵 所谓离子泵是一种位于细胞膜上的ATP酶,是一(穿膜)内在蛋白,能将ATP水解成ADP+pi,同时释放能量,ATP酶构象发生变化,带来离子的转位,将物质逆浓度梯度运输。
在质膜上,作为“泵”的ATP酶很多,它们都具有专一性,不同的ATP酶运输不同的物质或离子,因此,我们可以分别称它们为某物质的泵。如运输Ca++,叫钙泵(肌质网膜);运输H+,叫氢泵(细菌质膜)等等,质子泵又分为P型(真核质膜上)、V型(溶酶体膜)、H+—ATP酶(线、叶、细菌质膜)。现以钠—钾泵为例,说明离子泵的工作机制。
Na+—K+泵是存在于质膜上的由∝和β二个亚基组成的蛋白质。在有Na+、K+、Mg2+存在时就能把ATP水解成ADP+Pi,同时,把Na+和K+以反浓度梯度方向进行穿膜运输。可见Na+-K+泵是一种由Mg2+激活的Na+-K+-ATP酶。1957年,J.skou首先发现并阐述其机制,一般设想:
在膜内侧,Na+、Mg2+与酶(∝亚基)结合,促使酶与ATP反应,释放H3PO4,并与酶结合,引起酶构象变化,与Na+结合部位转向膜外侧。此时的构象亲K+排Na+,当与K+结合后,使酶脱去H3PO4,酶构象恢复,结合K+的一面转向膜内,此时构象亲Na+排K+,这样反复进行,不断在细胞内积累K+,将Na+排出细胞外。
(二) 间接利用ATP的主动运输——伴随运输(或称协同运输,co-transport) 指一种溶质的传递要同时依赖于另一种溶质的传递。如果两种溶质的传递方向相同,称同向运输(symport),如果方向彼此相反,则称反向运输(antiport)。 (三)基团转移
早见于细菌,也见于动物细胞。靠共价修饰(需能) (四)物质的跨膜转运与膜电位
○1调节渗透压;○2某些物质的吸收;○3产生膜电位;○4激活某些生化反应;如细胞内高浓度K+是核糖体合成蛋白质及糖孝解过程中重要酶活动的必要条件。
.......专业资料供学习分享下载