【解】P(|X?10.05|?0.12)?P??X?10.050.12?? ?0.06??0.06 2 ?1??(2)??(?2)?2[1??(2)]?0.045623.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ),若要求P{120<X≤200}≥0.8,允许σ最大不超过多少? 【解】P(120?X?200)?P?40?120?160X?160200?160??40???40??40? 故 ???????2??1?0.8???31.25 ??????????1.29????????????A?Be?xt,x?0,(??0), (1) 求常数A,B; (2) 求P{X≤2},P{X>3}; (3) 求分布密度f(x). 24.设随机变量X分布函数为 F(x)=?0,x?0.?limF(x)?1??A?1?x???【解】(1)由?得? (2) P(XlimF(x)?limF(x)?B??1?x?0??x?0???e??x,x?0(3) f(x)?F?(x)?? 0,x?0??2)?F(2)?1?e?2? P(X?3)?1?F(3)?1?(1?e?3?)?e?3? ?x,?25.设随机变量X的概率密度为 f(x)=?2?x,?0,?【解】当x<0时F(x)=0 当0≤x<1时F(x)?0?x?1,1?x?2, 求X的分布函数F(x),并画出f(x)及F(x). 其他.?x??f(t)dt??f(t)dt????0x0xx2f(t)dt??tdt? 当1≤x<2时F(x)??f(t)dt 0??2x 21 ??0??1f(t)dt??f(t)dt??f(t)dt01x11x??tdt??(2?t)dt01x23??2x??222x2???2x?12 当x≥2时F(x)??x??x?0?0,?2?x,0?x?1?2 f(t)dt?1 故 F(x)??2??x?2x?1,1?x?2?2?x?2?1,?bx,0?x?1,?1|x|26.设随机变量X的密度函数为 (1) f(x)=ae,λ>0; (2) f(x)=?2,1?x?2, 试确定常数a,b,并求其分布函数F(x). x??0,其他.???2a???|x|??x【解】(1) 由?f(x)dx?1知1??aedx?2a?edx? 故 a? ??0??2?????xe,x?0??2f(x)?? 当??e?xx?0??2x即密度函数为 x≤0时F(x)????f(x)dx??1e?xdx?e?x 当??22x?x>0时F(x)??x???1??x1?e,x?0?0?x?1?2 f(x)dx??e?xdx??e??xdx?1?e??x 故其分布函数 F(x)????2022?1e?x,x?0??222 (2) 由1?????0?x?1?x,?1121b1?f(x)dx??bxdx??2dx?? 得 b=1 即X的密度函数为 f(x)??2,1?x?2 01x22?x其他??0,当x≤0时F(x)=0 当0