2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n是多少?
3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;
(2)数127应排在上起第几行,左起第几列?
4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.
答案
一、填空题: 1.(1)
2.(5∶6)
周长的比为5∶6.
4.(20)
5.(3)
根据弃九法计算.3145的弃九数是4,92653的弃九数是7,积的弃九数是1,29139□685,已知8个数的弃九数是7,要使积的弃九数为1,空格内应填3. 6.(1/3)
7.(30)
8.(10)
设24辆全是汽车,其轮子数是24×4=96(个),但实际相差96-86=10(个),故(4×24-86)÷(4-3)=10(辆).
9.甲先把(4,5),(7,9),(8,10)分组,先写出6,则乙只能写4,5,7,8,9,10中一个,乙写任何组中一个,甲则写另一个. 10.(6次)
由6个学生向后转的总次数能被每次向后转的总次数整除,可知,6个学生向后转的总次数是5和6的公倍数,即30,60,90,…据题意要求6个学生向后转的总次数是30次,所以至少要做30÷5=6(次). 二、解答题: 1.(4)
由图可知空白部分的面积是规则的,左下角与右上角两空白部分面积和为3个单位,右下为2个单位面积,故阴影:9-3-2=4. 2.(1089)
9以后,没有向千位进位,从而可知b=0或1,经检验,当b=0时c=8,满足等式;当b=1时,算式无法成立.故所求四位数为1089.
3.本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置. 4.可以
先从两个自然数入手,有偶数,可被2整除,结论成立;当其中无偶数,奇数之和是偶数可被2整除.再推到3个自然数,当其中有3的倍数,选这个数即可;当无3的倍数,若这3个数被3除的余数相等,那么这3个数之和可被3整除,若余数不同,取余1和余2的各一个数和能被3整除,类似断定5个,6个,…,整数成立.利用结论与若干个数之和有关,构造k个和.设k个数是a1,a2,…,ak,考虑,b1,b2,b3,…bk其中b1=a1,b2=a1+a2,…,bk=a1+a2+a3+…+ak,考虑b1,b2,…,bk被k除后各自的余数,共有b;能被k整除,问题解决.若任一个数被k除余数都不是0,那么至多有余1,2,…,余k-1,所以至少有两个数,它们被k除后余数相同.这时它们的差被k整除,即a1,a2…,ak中存在若干数,它们的和被k整除.