2017年各地中考试卷2017年湖北省孝感市中考数学试卷 下载本文

OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( )

A. B. C.

D.

【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案. 【解答】解:∵点O是△ABC的内心, ∴∠ABO=∠CBO,∠ACO=∠BCO, ∵EF∥BC,

∴∠EOB=∠CBO,∠FOC=∠BCO, ∴∠ABO=∠EOB,∠ACO=∠FOC, ∴BE=OE,CF=OF,

∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC, ∵△ABC的周长为8,BC=x, ∴AB+AC=8﹣x, ∴y=8﹣x, ∵AB+AC>BC, ∴y>x, ∴8﹣x>x, ∴0<x<4,

即y与x的函数关系式为y=8﹣x(x<4),

故选:B.

【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键.

10.(3分)(2017?孝感)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是( )

①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.

A.2 B.3 C.4 D.5

【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可. 【解答】解:∵六边形ABCDEF的内角都相等, ∴∠EFA=∠FED=∠FAB=∠ABC=120°, ∵∠DAB=60°, ∴∠DAF=60°,

∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°, ∴AD∥EF∥CB,故②正确, ∴∠FED+∠EDA=180°, ∴∠EDA=∠ADC=60°, ∴∠EDA=∠DAB, ∴AB∥DE,故①正确,

∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC, ∴四边形EFAD,四边形BCDA是等腰梯形, ∴AF=DE,AB=CD,

∵AB=DE,

∴AF=CD,故③正确,

连接CF与AD交于点O,连接DF、AC、AE、DB、BE. ∵∠CDA=∠DAF, ∴AF∥CD,AF=CD,

∴四边形AFDC是平行四边形,故④正确, 同法可证四边形AEDB是平行四边形, ∴AD与CF,AD与BE互相平分, ∴OF=OC,OE=OB,OA=OD,

∴六边形ABCDEF既是中心对称图形,故⑤正确, 故选D.

【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

二、填空题(本大题共6小题,每小题3分,共18分)

11.(3分)(2017?孝感)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为 2.75×104 .

【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可. 【解答】解:27500=2.75×104. 故答案为:2.75×104.

【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中

1≤|a|<10,确定a与n的值是解题的关键.

12.(3分)(2017?孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则

可化简为

【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可. 【解答】解:故答案为:

=.

=

=

【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.

13.(3分)(2017?孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为 (,0) .

【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及