2019-2020年六年级上册数学知识点(概念)归纳与整理(人教版) 1、 1用数对确定点的位置,如(3,5)表示:(第三列,第五行) 几 列 几 行 ↓ ↓ 竖排叫列 横排叫行
一般(从左往右看) (从前往后看)
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:(7,9)表示第七列第九行。 4、物体向左、右平移,行数不变,列数减去或加上平移的各数。 物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元 分数乘法
(一)
、分数乘法的意义。 1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512 ×6,表示:6个55
12 相加是多少,还表示12
的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的5
12
是多少。
(二)、分数乘法的计算法则:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。 2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、分数大小的比较:
1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。
规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。 (1)找出含有分率的关键句。 (2)找出单位“1”的量
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。 (4)根据已知条件和问题列式解答。 2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?
(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”
(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。
(7)乘法应用题中,单位“1”是已知的。例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)
3 、分数乘法的解决问题
1、画线段图:
(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。2、找单位“1”: 一般在分率句中分率的前面;或 “占”、“是”、“比”的后
面
3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×几4、写数量关系式技巧:
几。 (单位“1”已知用乘法),求单位“1”的几分之几是多少)
(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ” (2)分率前是“的”: 单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思: 单位“1”的量×(1?分率)=分率对应量
5、分数的连乘。找到每一个分率的单位“1”。
(五)、倒数
1、倒数:乘积是1的两个数互为倒数。
2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。 3、0没有倒数,1的倒数是它本身。
4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
第三单元 分数除法
(一)、分数除法的意义:
分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:
25?14 表示:已知两个数的积是25 ,与其中一个因数14 ,求另一个因数是多少。
25÷4表示已知两个数的积是25 ,与其中一个因数4,求另一个因数是多少。还表示把25平均分成4份,每份是多少。
(二)、分数除法的计算:
1、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 2、规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数;
(2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。
3、 “??”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。
(三)比和比的应用:
1.比的意义:两个数相除又叫做两个数的比。比的后项不能为0。 2. 比值的意义:比的前项除以后项所得的商,叫做比值。 3.比值的表示方式:通常用分数、小数和整数表示。
4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商. 5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 比和除法、分数的联系:
比 前 项 比号“:” 后 项 比值 除 法 被除数 除号“÷” 除 数 商 分 数 分 子 分数线“—” 分 母 分数值
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
7. 化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数。
8.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 9.按比例分配的解题方法:
(1)先求出总的份数,再求出各部分数量占总数的几分之几。 (2)用总数乘各部分的分率求出各部分的数量。 10.分数除法中,被除数与商的大小关系:
一个数(0除外)除以一个真分数,所得的商大于它本身。 一个数(0除外)除以一个假分数,所得的商小于或等于它本身。 一个数(0除外)除以一个带分数,所得的商小于它本身。 (四)分数除法解决问题应用题注意事项:
(单位“1” 未知用除法或方程 1、已知单位“1”的几分之几是多少,求单位“1”的量。 )
(1)分率前是“的”: 用已知数÷分率(对应数量÷对应分率)
(2)分率前是“多或少”的意思: 用已知数÷(1?分率) 2、求一个数是另一个数的几分之几:就 一个数÷另一个数
4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或:
① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1 - 小数÷大数
(五).工程问题:把工作总量看作单位“1”,