七年级数学(上册)一元一次方程应用题分类专题讲解(超全) 下载本文

一元一次方程应用题专题讲解

(七)储蓄问题

1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.

2.储蓄问题中的量及其关系为:

利息=本金×利率×期数 本息和=本金+利息

利率?利息本金×100% 利息税=利息×税率(20%)

例11:某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

(八)配套问题:

这类问题的关键是找对配套的两类物体的数量关系。

例12:某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?

例13:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

(九)劳力调配问题

这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变; (3)只有调出没有调入,调出部分变化,其余不变。

5 / 7

一元一次方程应用题专题讲解

例14.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

例15.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

例16:有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的 ,应从乙队调多少人到甲队?

(十)比例分配问题

比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和=总量。

例14:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?

例15:学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

(十一)年龄问题

例17:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

例18:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和事41,求乙同学的年龄。

6 / 7

一元一次方程应用题专题讲解

(十二)比赛积分问题

例19:某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。

(十二)方案选择问题

例20.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售.

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成. 你认为哪种方案获利最多?为什么?

(十四)古典数学

例21.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。

例22.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

7 / 7