高等数学同济第六版总复习(一)习题答案 下载本文

总习题一

1? 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内?

(1)数列{xn}有界是数列{xn}收敛的________条件? 数列{xn}收敛是数列{xn}有界的________的条件?

(2)f(x)在x0的某一去心邻域内有界是limf(x)存在的________条件?

x?x0x?x0limf(x)存在是f(x)在x0的某一去心邻域内有界的________条件?

x?x0 (3) f(x)在x0的某一去心邻域内无界是limf(x)??的________条件?

x?x0limf(x)??是f(x)在x0的某一去心邻域内无界的________条件?

x?x0 (4)f(x)当x?x0时的右极限f(x0?)及左极限f(x0?)都存在且相等是limf(x)存在的________条件?

解 (1) 必要? 充分? (2) 必要? 充分? (3) 必要? 充分? (4) 充分必要?

2? 选择以下题中给出的四个结论中一个正确的结论? 设f(x)?2x?3x?2? 则当x?0时? 有( )?

(A)f(x)与x是等价无穷小? (B)f(x)与x同阶但非等价无穷小? (C)f(x)是比x高阶的无穷小? (D)f(x)是比x低阶的无穷小?

xxxxf(x)2?3?22?13?lim?lim?lim?1 解 因为limx?0xx?0x?0xx?0xxt?ln3limu?ln2?ln3 ?ln2lim(令2x?1?t? 3x?1?u) ?

t?0ln(1?t)u?0ln(1?u)所以f(x)与x同阶但非等价无穷小? 故应选B?

3? 设f(x)的定义域是[0? 1]? 求下列函数的定义域? (1) f(ex)? (2) f(ln x)? (3) f(arctan x)? (4) f(cos x)?

解 (1)由0?ex?1得x?0? 即函数f(ex)的定义域为(??? 0]? (2) 由0? ln x?1得1?x?e ? 即函数f(ln x)的定义域为[1? e]?

(3) 由0? arctan x ?1得0?x?tan 1? 即函数f(arctan x)的定义域为[0? tan 1]? (4) 由0? cos x?1得2n????x?2n???(n?0? ?1? ?2? ? ? ?)?

22即函数f(cos x)的定义域为[2n???, n???]? (n?0? ?1? ?2? ? ? ?)?

22 4? 设

x?00 x ? 0?0 f(x)??? g(x)??2? ?x x ? 0???x x?0求f[f(x)]? g[g(x)]? f[g(x)]? g[f(x)]?

0 x?0 解 因为f(x)?0? 所以f[f(x)]?f(x)???x x?0?

? 因为g(x)?0? 所以g[g(x)]?0? 因为g(x)?0? 所以f[g(x)]?0?

x?0?0 因为f(x)?0? 所以g[f(x)]??f 2(x)??2?

?x x?0? 5? 利用y?sin x的图形作出下列函数的图形?

(1)y?|sin x|? (2)y?sin|x|? (3)y?2sinx?

2 6? 把半径为R的一圆形铁片? 自中心处剪去中心角为?的一扇形后围成一无底圆锥? 试将这圆锥的体积表为?的函数?

解 设围成的圆锥的底半径为r? 高为h? 依题意有

R(2???) R(2???)?2?r ? r??

2?2R2(2???)24?????R h?R?r?R?? 2?4?2222圆锥的体积为

R2(2???)214????2 ?R V???32?4?23R(2???)2?4???a2 (0???2?)? ?224?x2?x?6?5 7? 根据函数极限的定义证明lim?

x?3x?32x?x?6?5|?? 证明 对于任意给定的??0? 要使|? 只需|x?3|??? 取???? 当x?30?|x?3|??时? 就有|x?3|??? 即| 8? 求下列极限?

21? (1)limx?x?x?1(x?1)2x2?x?6?5|??x2?x?6?5? 所以lim?

x?3x?3x?3 (2)limx(x2?1?x)?

x??? (3)lim(2x?3)x?1?

x??2x?1sinx? (4)limtanx?x?0x3xxx1a?b?c)x(a?0? b?0? c?0)? (5)lim(x?03 (6)lim(sinx)tanx?

x??22(x?1)2x1??? ?0? 所以lim?x? 解 (1)因为lim2x?1x?x?1x?1(x?1)2x(x2?1?x)(x2?1?x) (2)limx(x?1?x)?lim

2x???x???(x?1?x)2 ?limx???x1?lim?1?

x2?1?xx???1?1?12x22x?1?12x?322x?1x?1)?lim(1?)?lim(1?)22 (3)lim(x??2x?1x??x??2x?12x?12x?1122(1?)2(1?)2 ?limx??2x?12x?12x?11222)?lim(1?)2?e? ?lim(1?x??x??2x?12x?1sinx(1?1)sinx(1?cosx)sinx?limcosx?lim (4)limtanx? x?0x?0x?0x3x3x3cosxsinx?2sin2x2x?(x)22?lim2?1 ?limx?0x?02x3cosxx3(提示? 用等价无穷小换)?