小学奥数 第四讲 最大数和最小数 下载本文

第四讲 最大数和最小数问题

六月一日,“小天使”儿童快餐店迎来了28位前来就餐的小朋友。快餐店的老板准备了一份精美的礼品送给其中年龄最小的小朋友。

谁的年龄最小呢?

当每个小朋友报出自己的年龄后,老板发现,其中有10岁的,也有9岁、8岁、7岁、6岁的,最小的是5岁。但是5岁的小朋友有4位。按照这4位小朋友生日的先后,还能找到一个最小的,因此老板要他们各自报出自己的生日。结果如下:

小雨 2月8日 豆豆 5月2日 苗苗 8月16日 慧慧 12月9日

把这4位小客人的生日一比,很容易知道,慧慧是28位小朋友当中最小的。

慧慧得到老板送的大蛋糕。她把这块大蛋糕分成了28份,让大家和她一起品尝。

也许有的同学会问:“如果这4个小朋友中有两个生日是同一天,那怎么办呢?”

是不是谁生日的数字大就是谁大呢?哪些是通过比数字的大小得到最大最小数?通过下面的一些例题与方法,我们将会得到这方面

的知识。

典型例题

例[1] 用2,4,6,8这4个数字组成一个最大的四位数。 分析 用这4个数字组成4位数有很多个,但最大的只有一个。要使组成的四位数最大,应当遵循一条原则:用较大的数占较高的数位。

解 用2,4,6,8组成的最大的四位数是8642。

例[2] 从十位数7677782980中划去5个数字,使剩下的5个数字(先后顺序不改变)组成的五位数最小。这个五位数最小的五位数是多少?

分析 在10个数字中划去5个数字,还剩5个数字组成五位数。要使这个五位数最小,应当用最小的数去占最高位(万位),第2小的占千位……

但是,10个数字中最小的2不能放在万位上(想一想,为什么?)。这样,万位上的数只能在剩下的第2小的数中选,应选6。万位确定后,千位在剩下的数中选最小的2。

而题目中要求剩下的5个数字的先后顺序不改变,所以,百位、

十位、个位上的数字只能是最后三个数字9,8,0。

解 划去4个7和万位上的8。剩下的数组成的最小五位数是62980。

例[3] 钱袋中有1分、2分、5分3种硬币。甲从袋中取出3枚,乙从袋中取出2枚,取出的5枚硬币仅有2种面值,并且甲取出的3枚硬币面值的和比乙取出的2枚硬币面值的和少3分,那么取出的钱数的总和最多是多少分?

分析 因为乙只取2枚硬币,而2枚硬币的钱数最多是5×2=10(分)。而甲取出的3枚硬币的和比乙取出的2枚硬币的和少3分。因此,最多只有10-3=7(分)。两者合起来就是取出的钱数的总和的最大值。

解 10+7=17(分)

例[4] 一把钥匙只能开一把锁。现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?

分析 开第1把锁,从最坏的情况考虑,试了3把钥匙还未成功,则第4把不用再试了,他一定能打开这把锁。同样的道理,开第2把锁最多试2次,开第3把锁最多试1次,最后剩下的一把钥匙一定能打开剩下的第4把锁,不用再试。