伴随矩阵的性质及应用汇总 下载本文

中山大学 本科毕业论文(设计)

(2016届)

题 目: 伴随矩阵及其应用 姓 名: 学 号: 学 院: 数学学院 专 业: 指导老师: 申请学位:

摘 要

伴随矩阵是高等代数中的一个重要概念,由它可以推导出求逆矩阵的计算公式,从而解决了矩阵求逆的问题.同时关于矩阵A 的伴随矩阵A* 的性质也是非常重要的. 在目前的高等数学教材中,伴随矩阵只是作为求解逆矩阵的工具出现,涉及内容较少,并没有深入的研究探讨.因此本文主要研究了伴随矩阵在对称性、合同性、正定性、正交性、特征多项式,特征值等方面的性质,并给出伴随矩阵在实际问题中的综合应用实例.

关键词:伴随矩阵,正交矩阵,正定矩阵,可逆矩阵,特征多项式,特征值

I

Abstract

Adjoint matrix is an important concept in higher algebra, it can derive inverse matrix calculation formula, so as to solve the inverse problem of matrix inversion. At the same time on matrixA with the nature of the matrixA? is also very important. In the current teaching of higher mathematics, adjoint matrix is only for solving inverse matrix appeared, less involved in the content, and no in-depth study. Therefore, this paper mainly studies the properties of adjoint matrix in symmetry, contract, positive definite, orthogonal and characteristic polynomial, characteristic value, and given with with matrix in the practical problems in comprehensive application examples.

Key words: adjoint matrix, orthogonal matrix, positive definite matrix, reversible matrix, characteristic polynomial, eigenvalue.

II