=40(克) 答略。
第十三讲 比较法
通过对应用题条件之间的比较,或难解题与易解题的比较,找出它们的联系与区别,研究产生联系与区别的原因,从而发现解题思路的解题方法叫做比较法。 在用比较法解应用题时,有些条件可直接比较,有些条件不能直接比较。在条件不能直接比较时,可借助画图、列表等方法比较,也可适当变换题目的陈述方式及数量的大小,创造条件比较。
(一)在同一道题内比较
在同一道题内比较,就是在同一道题的条件与条件、数量与数量之间的比较,不涉及其他题目。
1.直接比较
例1 五年级甲班要种一些树。如果每人种5棵,则剩下75棵;如果每人种7棵,则缺15棵。问这个班有多少人?这批树苗有多少棵?(适于四年级程度)
解:将两种分配方案进行比较,就会发现,第二次比第一次每人多种:
7-5=2(棵)
第二次比第一次多种:
75+15=90(棵)
90棵中含有多少个2棵就是全班的人数:
90÷2=45(人)
这批树苗的棵数是:
5×45+75=300(棵) 或7×45-15=300(棵)
答略。
*例2 四季茶庄购进两批茶叶,第一批有35箱绿茶和15箱红茶,共重2925千克。第二批有35箱绿茶和28箱红茶,共重3640千克。两种茶叶每箱各重多少千克?(适于五年级程度)
解:将前后两批茶叶的箱数与箱数、重量与重量分别比较,可发现,第二批红茶箱数比第一批红茶箱数多:
28-15=13(箱)
第二批红茶比第一批红茶多:
3640-2925=715(千克)
因此,可得每一箱红茶重量:
715÷13=55(千克)
每一箱绿茶重量:
(2925-55×15)÷35
=(2925-825)÷35 =2100÷35 =60(千克) 答略。 2.画图比较
有些应用题由于数量关系复杂、抽象,不便于通过直接推理、比较看出数量关系,可借助画图作比较,就容易看出数量关系。
解:作图13-1,比较已修过米数与未修过米数的关系。
可看出,这段公路一共分为(7+2)份。
答略。 3.列表比较
有些应用题适于借助列表的方法比较条件。在用列表的方法比较条件时,要把题中的条件摘录下来,尽量按“同事横对,同名竖对”的格式排列成表。这就是说,要尽量使同一件事情的数量横着对齐,使单位名称相同的数量竖着对齐。 例 赵明准备买2千克苹果和3千克梨,共带6.8元钱。到水果店后,他买了3千克苹果和2千克梨,结果缺了0.4元钱。求每千克苹果、梨各多少元钱?(适于五年级程度)
解:摘录已知条件排列成表13-1。 表13-1
比较①、②两组数量会看出:由于多买了1千克苹果,少买了1千克梨,才缺了0.4元。
可见1千克苹果比1千克梨贵0.4元。
从买2千克苹果、3千克梨的6.8元中去掉买2千克苹果多用的钱,便可以把买2千克苹果当成买2千克梨,则一共买梨(2+3)千克,用钱:
6.8-0.4×2=6(元)
每千克梨的价钱是:
6÷(2+3)=1.2(元)
每千克苹果的价钱是:
1.2+0.4=1.6(元)
答略。(二)和容易解的题比较
当一道应用题比较复杂时,可先回忆过去是不是学过类似的、较容易解的题,回忆起来后,可进行比较,找出联系,从而找到解题途径。
1.与常见题比较
例 4名骑兵轮流骑3匹马,行8千米远的路程,每人骑马行的路程相等。求每人骑马行的路程是多少?(适于四年级程度)
小学生对这类题不易理解,如与下面的常见题作比较就容易理解了。 有3篮苹果,每篮8个,平均分给4人,每人得几个? 把这两道题中的条件都摘录下来,一一对应地排列起来: 3匹马?????????3篮苹果
每匹马都行8千米????每篮都装8个苹果 4人骑马行的路程相等??4人得到的苹果一样多 解答“苹果”这道题的方法是:
8×3÷4
通过这样的比较,自然会想出解题的方法。 解:8×3÷4=6(千米)
答:每人骑马行的路程是6千米。 2.与基本题比较
例 甲、乙两地相距10.5千米,某人从甲地到乙地每小时走5千米,从乙地到甲地每小时走3千米。求他往返于甲、乙两地的平均速度。(适于五年级程度)
在解答此题时,有的同学可能这样解:(5+3)÷2=4(千米)。这是错误的。 把上题与下面的题作比较,就会发现问题。
甲、乙两地相距12千米,某人从甲地到乙地走了4小时,他每小时平均走多少千米?
解此题的方法是:12÷4=3(千米)。这是总路程÷总的时间=平均速度。 前面的解法不符合“总路程÷总时间=平均速度”这个公式,所以是错误的。 解:本题的总路程是:
10.5×2
总时间是:
10.5÷5+10.5÷3
所以他往返的平均速度是:
10.5×2÷(10.5÷5+10.5÷3)=3.75(千米/小时)
答略。
3.把逆向题与顺向题比较
例 王明与李平共有糖若干块。王明的糖比李平的糖多
题,不易找出解题方法。
把这道题与类似的一道顺向思维的题比较一下,就可得出解题方法。