2017年秋季新版苏科版七年级数学上学期第1章、数学与我们同行单元复习数学手抄报素材 下载本文

数学手抄报

勾股定理

勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a2 + b2 = c2的正整数组(a,b,c)。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2 。 蝴蝶定理

蝴蝶定理(Butterfly theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC

各相交PQ于点X和Y,则M是XY的中点。该定理实际上是射影几何中一个定理的特殊情 况,有多种推广:M,作为圆内弦是不必要的,可以移到圆外。圆可以改为任意圆锥曲线。将圆变为一个完全四角形,M为对角线交点。去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”,不为中点时满足: ,这对2,3均成立。 燕尾定理

燕尾定理:因此图类似燕尾而得名。是五大模型之一,是一个关于三角形的定理。 证法:利用分比性质。 塞瓦定理

使用塞瓦定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来进行三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。塞瓦定理的对偶定理是梅涅劳斯定理。 梅涅劳斯

梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。 或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1。

共边定理 有一条公共边的三角形叫做共边三角形。

几何课本里有相似三角形、全等三角形,但没有共边三角形。其实,共边三角形在几何图形中出现的频率更多。比如,平面上随意取四个点A、B、C、D,这其中一般没有相似三角形,也没有全等三角形,但却有许多共边三角形。由此,我们说一下共边定理 共边定理:设直线AB与PQ交于点M,则S△PAB÷S△QAB=PM÷QM 证明:分如下四种情况,分别作三角形高,由相似三角形可证