2017年湖北省孝感市中考数学试卷(解析版) 下载本文

在△AOE和△BAG中,∴△AOE≌△BAG(AAS), ∴OE=AG,AE=BG, ∵点A(n,1), ∴AG=OE=n,BG=AE=1, ∴B(n+1,1﹣n),

∴k=n×1=(n+1)(1﹣n), 整理得:n2+n﹣1=0, 解得:n=∴n=∴k=

, ;

(负值舍去),

故答案为:

【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.

三、解答题(本大题共8小题,共72分) 17.计算:﹣22+

+

cos45°.

【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.

【解答】解:原式=﹣4﹣2+=﹣4﹣2+1

×

=﹣5.

【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.

18.如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.

【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.

【解答】证明:∵AE⊥BD,CF⊥BD, ∴∠AEB=∠CFD=90°, ∵BF=DE, ∴BF+EF=DE+EF, ∴BE=DF.

在Rt△AFB和Rt△CFD中,

∴Rt△AFB≌Rt△CFD(HL), ∴∠B=∠D, ∴AB∥CD.

【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.

19.今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的

统计图表. 等级 A B C D E F 得分x(分) 95≤x≤100 90≤x<95 85≤x<90 80≤x<85 75≤x<80 70≤x<75 频数(人) 4 m n 24 8 4 请根据图表提供的信息,解答下列问题:

(1)本次抽样调查样本容量为 80 ,表中:m= 12 ,n= 8 ;扇形统计图中,E等级对应扇形的圆心角α等于 36 度;

(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.

【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;

(2)画出树状图即可解决问题.

【解答】解:(1)本次抽样调查样本容量为24÷30%=80, 则m=80×15%=12,n=80﹣(4+12+24+8+4)=28, 扇形统计图中,E等级对应扇形的圆心角α=360°×故答案为:80,12,8,36;

=36°,

(2)树状图如图所示,

∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能, ∴抽取两人恰好是甲和乙的概率是.

【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.

20.如图,已知矩形ABCD(AB<AD).

(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;

①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE; ②作∠DAE的平分线交CD于点F; ③连接EF;

(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为

【分析】(1)根据题目要求作图即可;

(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=【解答】解:(1)如图所示;

可得答案.